OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A052860(k) * binomial(n-1,k-1) * a(n-k).
a(n) ~ n^(n-1/4) * exp(1/4 - exp(-1) + 2*exp(-1/2)*sqrt(n)) / (sqrt(2) * (exp(1) - 1)^n). - Vaclav Kotesovec, Jul 15 2022
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1+log(1-x)))))
(PARI) a007840(n) = sum(k=0, n, k!*abs(stirling(n, k, 1)));
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*a007840(j-1)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 15 2022
STATUS
approved