login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336293
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(2*k,k) * (n-k)!.
2
1, 3, 16, 116, 1038, 10922, 131256, 1766592, 26253702, 426173906, 7492270416, 141661870088, 2864168171596, 61621248390756, 1404853103594128, 33815954626749600, 856680253728250950, 22777071459869216850, 633968368216974945600, 18430976777427663053400
OFFSET
0,2
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * BesselI(0,2*sqrt(x))^2.
a(n) ~ n^n * exp(4*sqrt(n) - n - 2) / sqrt(8*Pi) * (1 + 55/(24*sqrt(n))). - Vaclav Kotesovec, Aug 04 2022
Recurrence: n*a(n) = (3*n^2 + n - 1)*a(n-1) - (n-1)^2*(3*n + 1)*a(n-2) + (n-2)^2*(n-1)^2*a(n-3). - Vaclav Kotesovec, Aug 04 2022
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Binomial[2 k, k] (n - k)!, {k, 0, n}], {n, 0, 19}]
Table[n! HypergeometricPFQ[{1/2, -n}, {1, 1}, -4], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Exp[x] BesselI[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^2 * binomial(2*k, k) * (n-k)!); \\ Michel Marcus, Jul 17 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 16 2020
STATUS
approved