OFFSET
0,2
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(x) * BesselI(0,2*sqrt(x))^2.
a(n) ~ n^n * exp(4*sqrt(n) - n - 2) / sqrt(8*Pi) * (1 + 55/(24*sqrt(n))). - Vaclav Kotesovec, Aug 04 2022
Recurrence: n*a(n) = (3*n^2 + n - 1)*a(n-1) - (n-1)^2*(3*n + 1)*a(n-2) + (n-2)^2*(n-1)^2*a(n-3). - Vaclav Kotesovec, Aug 04 2022
MATHEMATICA
Table[Sum[Binomial[n, k]^2 Binomial[2 k, k] (n - k)!, {k, 0, n}], {n, 0, 19}]
Table[n! HypergeometricPFQ[{1/2, -n}, {1, 1}, -4], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Exp[x] BesselI[0, 2 Sqrt[x]]^2, {x, 0, nmax}], x] Range[0, nmax]!^2
PROG
(PARI) a(n) = sum(k=0, n, binomial(n, k)^2 * binomial(2*k, k) * (n-k)!); \\ Michel Marcus, Jul 17 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 16 2020
STATUS
approved