login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336290
a(0) = 1; a(n) = n! * Sum_{k=1..n} binomial(n-1,k-1) * H(k) * a(n-k) / (n-k)!, where H(k) is the k-th harmonic number.
1
1, 1, 5, 44, 628, 12994, 363548, 13141974, 593579712, 32644440048, 2141946861312, 164937634714896, 14703536203936512, 1500149281670010048, 173464224256287048576, 22541427301008492798144, 3267767649638304967827456, 525055667919614566758512640
OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(Sum_{n>=1} H(n) * x^n / n!).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = n! Sum[Binomial[n - 1, k - 1] HarmonicNumber[k] a[n - k]/(n - k)!, {k, 1, n}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Exp[Sum[HarmonicNumber[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^2
nmax = 17; Assuming[x > 0, CoefficientList[Series[Exp[Exp[x] (EulerGamma - ExpIntegralEi[-x] + Log[x])], {x, 0, nmax}], x]] Range[0, nmax]!^2
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 16 2020
STATUS
approved