login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201923
E.g.f. satisfies: A(x) = 1/(cos(x*A(x)) - sin(x*A(x))).
3
1, 1, 5, 44, 581, 10256, 227529, 6088256, 190930729, 6870227200, 279066777613, 12632667642880, 630670054092525, 34426087332253696, 2039903110075608977, 130404672744539242496, 8946117466489960168913, 655585000075494566199296, 51111210765059412626238741
OFFSET
0,3
COMMENTS
Compare e.g.f. to: LambertW(-x)/(-x) = (1/x)*Series_Reversion(x*(cosh(x) - sinh(x))).
The radius of convergence r of e.g.f. A(x) is given by:
r = t*(cos(t) - sin(t)) where tan(t) = (1-t)/(1+t), which evaluates as:
r = 0.21266685344074710045360679397024815598865409988038...
t = 0.40262817418811160981993252391123072456350647779608...
Further, A(r) = 1/(cos(t) - sin(t)), thus
A(r) = 1.89323426605496483543109751303457163422769666683274...
FORMULA
E.g.f. satisfies: A( x*(cos(x) - sin(x)) ) = 1/(cos(x) - sin(x)).
E.g.f: (1/x) * Series_Reversion( x*(cos(x) - sin(x)) ).
a(n) = [x^n/n!] 1/(cos(x)-sin(x))^(n+1) / (n+1).
a(n) ~ n^(n-1) * sqrt((t*cos(2*t))/(3+sin(2*t))) / (exp(n) * r^(n+1)), where r and t were described above. - Vaclav Kotesovec, Jan 12 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 44*x^3/3! + 581*x^4/4! + 10256*x^5/5! +...
where
1/(cos(x)-sin(x)) = 1 + x + 3*x^2/2! + 11*x^3/3! + 57*x^4/4! + 361*x^5/5! + 2763*x^6/6! +...+ A001586(n)*x^n/n! +...
The coefficient of x^n/n! in powers of G(x) = 1/(cos(x)-sin(x)) begins:
G^1: [(1), 1, 3, 11, 57, 361, 2763, 24611, ..., A001586(n), ...];
G^2: [1,(2), 8, 40, 256, 1952, 17408, 177280, ..., A000828(n+1), ...];
G^3: [1, 3,(15), 93, 705, 6243, 63375, 724413, ...];
G^4: [1, 4, 24,(176), 1536, 15424, 175104, 2214656, ...];
G^5: [1, 5, 35, 295,(2905), 32525, 407435, 5638495, ...];
G^6: [1, 6, 48, 456, 4992, (61536), 841728, 12633216, ...];
G^7: [1, 7, 63, 665, 8001, 107527, (1592703), 25738265, ...];
G^8: [1, 8, 80, 928, 12160, 176768, 2816000, (48706048), ...]; ...
where coefficients in parenthesis form the initial terms of this sequence:
[1/1, 2/2, 15/3, 176/4, 2905/5, 61536/6, 1592703/7, 48706048/8, ...].
MATHEMATICA
CoefficientList[1/x*InverseSeries[Series[x*(Cos[x] - Sin[x]), {x, 0, 21}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 12 2014 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(1/x*serreverse(x*(cos(X)-sin(X) )), n)}
(PARI) {a(n)=local(A=1+x, X=x+x*O(x^n)); for(i=1, n, A=1/(cos(X*A) - sin(X*A))); n!*polcoeff(A, n)}
CROSSREFS
Cf. A001586.
Sequence in context: A349836 A052803 A377860 * A222059 A336290 A214396
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2011
STATUS
approved