The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201925 Decimal expansion of the x nearest 0 that satisfies x^2+4x+3=e^x. 4
 7, 9, 5, 2, 2, 6, 6, 1, 3, 8, 6, 0, 5, 4, 0, 7, 9, 8, 8, 9, 6, 2, 6, 1, 5, 5, 6, 3, 8, 8, 7, 1, 8, 0, 2, 9, 3, 6, 3, 7, 4, 8, 5, 3, 8, 5, 6, 2, 0, 8, 7, 8, 6, 0, 3, 5, 7, 5, 0, 0, 6, 4, 4, 0, 0, 6, 9, 4, 8, 1, 6, 2, 4, 2, 3, 4, 8, 1, 2, 6, 8, 5, 9, 0, 8, 7, 3, 9, 7, 0, 2, 5, 4, 6, 5, 0, 8, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A201741 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least:  -3.024014501135293784775589627797395351659... nearest to 0:  -0.79522661386054079889626155638871... greatest:  3.2986275628038651802559413164923413431... MATHEMATICA a = 1; b = 4; c = 3; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3.5, 3.5}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -3.1, -3.0}, WorkingPrecision -> 110] RealDigits[r]     (* A201924 *) r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110] RealDigits[r]     (* A201925 *) r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110] RealDigits[r]     (* A201926 *) CROSSREFS Cf. A201741. Sequence in context: A179292 A198756 A140899 * A021561 A216104 A093206 Adjacent sequences:  A201922 A201923 A201924 * A201926 A201927 A201928 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 22:29 EDT 2021. Contains 347548 sequences. (Running on oeis4.)