The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201928 Decimal expansion of the x nearest 0 that satisfies x^2+4x+4=e^x. 4
 1, 5, 3, 6, 0, 7, 8, 0, 9, 4, 0, 2, 6, 9, 3, 1, 1, 3, 0, 5, 1, 1, 3, 6, 7, 0, 5, 2, 1, 5, 5, 0, 9, 5, 9, 8, 1, 8, 1, 3, 6, 9, 8, 2, 9, 7, 7, 4, 3, 8, 3, 6, 3, 8, 9, 0, 2, 0, 6, 2, 0, 6, 5, 4, 4, 9, 6, 7, 5, 7, 7, 8, 0, 2, 5, 5, 2, 4, 6, 8, 4, 1, 4, 1, 8, 2, 9, 0, 2, 7, 8, 0, 4, 0, 6, 7, 9, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A201741 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least:  -2.3143699029676280191739133920... nearest to 0:  -1.53607809402693113051136705... greatest:  3.3566939800333213068257690241... MATHEMATICA a = 1; b = 4; c = 4; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -2.4, -2.3}, WorkingPrecision -> 110] RealDigits[r]     (* A201927 *) r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110] RealDigits[r]     (* A201928 *) r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110] RealDigits[r]     (* A201929 *) CROSSREFS Cf. A201741. Sequence in context: A265782 A073685 A019212 * A021655 A083237 A072424 Adjacent sequences:  A201925 A201926 A201927 * A201929 A201930 A201931 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 23:50 EST 2022. Contains 350504 sequences. (Running on oeis4.)