login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201924 Decimal expansion of the least x satisfying x^2+4x+3=e^x. 4
3, 0, 2, 4, 0, 1, 4, 5, 0, 1, 1, 3, 5, 2, 9, 3, 7, 8, 4, 7, 7, 5, 5, 8, 9, 6, 2, 7, 7, 9, 7, 3, 9, 5, 3, 5, 1, 6, 5, 9, 8, 2, 8, 2, 8, 7, 1, 3, 2, 9, 0, 7, 9, 1, 9, 8, 7, 5, 0, 3, 5, 5, 4, 8, 2, 6, 2, 3, 8, 2, 5, 2, 4, 7, 0, 6, 6, 4, 3, 2, 9, 4, 3, 2, 4, 8, 4, 3, 4, 2, 4, 1, 0, 3, 3, 5, 6, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A201741 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least:  -3.024014501135293784775589627797395351659...

nearest to 0:  -0.79522661386054079889626155638871...

greatest:  3.2986275628038651802559413164923413431...

MATHEMATICA

a = 1; b = 4; c = 3;

f[x_] := a*x^2 + b*x + c; g[x_] := E^x

Plot[{f[x], g[x]}, {x, -3.5, 3.5}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -3.1, -3.0}, WorkingPrecision -> 110]

RealDigits[r]     (* A201924 *)

r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]

RealDigits[r]     (* A201925 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]

RealDigits[r]     (* A201926 *)

CROSSREFS

Cf. A201741.

Sequence in context: A159977 A245251 A177461 * A112974 A113069 A136163

Adjacent sequences:  A201921 A201922 A201923 * A201925 A201926 A201927

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 02:39 EDT 2021. Contains 346276 sequences. (Running on oeis4.)