OFFSET
1,4
LINKS
Alois P. Heinz, Rows n = 1..75, flattened
P. Flajolet, R. Sedgewick, Analytic combinatorics, Theorem I.1 (Multiset)
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 (2017) Table 82
Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 5 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
FORMULA
T(n,m) = sum over the partitions of n with m parts: 1*K1 + 2*K2 + ... + n*Kn = n, K1 + K2 + ... + Kn = m, of Product_{i=1..n} binomial(A001349(i) + Ki - 1, Ki).
O.g.f.: Product_{n>=1} 1/(1 - y*x^n)^A001349(n). - Geoffrey Critzer, Apr 19 2012
EXAMPLE
Triangle starts:
1
1 1
2 1 1
6 3 1 1
21 8 3 1 1
112 30 9 3 1 1
853 145 32 9 3 1 1 ...
MATHEMATICA
nn=10; c=(A000088=Table[NumberOfGraphs[n], {n, 0, nn}]; f[x_] = 1-Product[1/(1-x^k)^a[k], {k, 1, nn}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x, 0, nn}], x]; sol=First[Solve[Thread[Rest[coes+A000088]==0]]]; Table[a[n], {n, 0, nn}]/.sol); f[list_]:=Select[list, #>0&]; g=Product[1/(1-y x^n)^c[[n+1]], {n, 1, nn}]; Map[f, Drop[CoefficientList[Series[g, {x, 0, nn}], {x, y}], 1]] //Flatten (* Geoffrey Critzer, Apr 19 2012 (c in above Mma code is given by Jean Francois Alcover in A001349) *)
CROSSREFS
KEYWORD
AUTHOR
Max Alekseyev, Dec 06 2011
STATUS
approved