OFFSET
1,4
COMMENTS
This table coincides with A173333 but has an extra main diagonal with entries 1.
a(n,k) is the number of necklaces of n beads (C_N symmetry), with colors from the repertoire {c[1],c[2],...,c[n]}, corresponding to the representative color multinomials obtained from the partition [k,1^(n-k)] of n with m=n-k+1 parts by 'exponentiation' (taking the parts in the given order as exponents of the colors), hence only m from the available n colors are present. As representative necklaces one takes the ones where the color c[1] appears k times. In particular, for k=1 the partition is [1^n] and all n colors are used, and there are (n-1)! necklaces from permuting the n colors.
a(n,k) appears in the representative necklace partition array A212359 in row n at the position l(n,n+1-k,1), with l(n,m,1) the position of the first partition with m parts in the list of partitions of n in A-St order. E.g., n=5, k=4: l(5,5-3,1) =2 with the partition [4,1] (used in reverse order compared to A-St).
See the comments on A212359 for the Abramowitz-Stegun (A-St) reference, and the 'exponentiation' to obtain multisets, used to encode color multinomials, from partitions.
The row sums of this triangle are given by A213937.
FORMULA
EXAMPLE
n\k 1 2 3 4 5 6 7 8 9 10 ...
1 1
2 1 1
3 2 1 1
4 6 3 1 1
5 24 12 4 1 1
6 120 60 20 5 1 1
7 720 360 120 30 6 1 1
8 5040 2520 840 210 42 7 1 1
9 40320 20160 6720 1680 336 56 8 1 1
10 362880 181440 60480 15120 3024 504 72 9 1 1 ...
a(4,3) = 1 because the partition is [3,1], the color signature (exponentiation) c[.]^3 c[.]^1, and the one representative necklace (we use j for color c[j] here) is: cyclic(1112).
a(4,2) = 3 because the partition is [2,1^2], the color signature c[.]^2 c[.] c[.], and the three representative necklaces are: cyclic(1123), cyclic(1132) and cyclic(1213).
a(5,3) = 4 because the color signature is c[.]^3 c[.] c[.] (from the partition [3,1^2]). and the four representative necklaces are 11123, 11132, 11213 and 11312, all taken cyclically.
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Jul 10 2012
STATUS
approved