login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369435
Square array A(n, k) = n! * [t^n] (exp(t)/(1+k-k*exp(t))) for n >= 0 and k >= 0, read by antidiagonals upwards.
1
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 26, 15, 4, 1, 1, 150, 111, 28, 5, 1, 1, 1082, 1095, 292, 45, 6, 1, 1, 9366, 13503, 4060, 605, 66, 7, 1, 1, 94586, 199815, 70564, 10845, 1086, 91, 8, 1, 1, 1091670, 3449631, 1471708, 243005, 23826, 1771, 120, 9, 1, 1, 14174522, 68062695, 35810212, 6534045, 653406, 45955, 2696, 153, 10, 1
OFFSET
0,5
COMMENTS
The following formulae are conjectures:
(1) det(A(0..n, k..k+n)) = (Product_{i=1..n} i!)^2 for k >= 0 and n >= 0.
(2) A(n, k) = 1 + k * (Sum_{i=0..n-1} binomial(n, i) * A(i, k)) for k >= 0 and
n > 0 with initial values A(0, k) = 1 for k >= 0.
(3) A(n, k) = (k+1)^n + k * (Sum_{i=0..n-2} binomial(n, i) * A(i, k) *
((k+1)^(n-i) - (k+1) * k^(n-1-i))) for k >= 0 and n > 1 with initial values
A(n, k) = (k+1)^n for k >= 0 and n < 2.
(4) Let B(n, k) = (k!) * (Sum_{i=k..n} (i!) * S2(i, k) * S2(n+1, i+1)) for 0 <=
k <= n where S2(i, j) = A048993(i, j). Then holds:
(a) B(n, k) = Sum_{i=0..k} (-1)^(k-i) * binomial(k, i) * A(n, i) for 0 <= k
<= n;
(b) E.g.f. of row n >= 0: exp(x) * (Sum_{k=0..n} B(n, k) * x^k / (k!)).
FORMULA
A(n, k) = Sum_{i=0..n} A163626(n, i) * (-k)^i for n >= 0 and k >= 0.
A(n, k) = Sum_{i=0..n} A028246(n+1, i+1) * k^i for n >= 0 and k >= 0.
E.g.f. of column k >= 0: exp(t) / (1 + k - k * exp(t)).
A(n, n) = Sum_{i=0..n} A163626(n, i) * (-n)^i = Sum_{i=0..n} A028246(n+1, i+1) * n^i for n >= 0.
Conjecture: A(n, n) = (n + 1) * A321189(n) for n >= 0. [This is true. - Peter Luschny, Apr 26 2024]
A(n, n) = A372312(n). - Peter Luschny, Apr 26 2024
EXAMPLE
Array A(n, k) starts:
n\k : 0 1 2 3 4 5 6 7 8
================================================================================
0 : 1 1 1 1 1 1 1 1 1
1 : 1 2 3 4 5 6 7 8 9
2 : 1 6 15 28 45 66 91 120 153
3 : 1 26 111 292 605 1086 1771 2696 3897
4 : 1 150 1095 4060 10845 23826 45955 80760 132345
5 : 1 1082 13503 70564 243005 653406 1490587 3024008 5618169
6 : 1 9366 199815 1471708 6534045 21502866 58018051 135878520 286195833
7 : 1 94586 3449631 35810212
8 : 1 1091670 68062695
9 : 1 14174522
.
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 6, 3, 1;
[4] 1, 26, 15, 4, 1;
[5] 1, 150, 111, 28, 5, 1;
[6] 1, 1082, 1095, 292, 45, 6, 1;
[7] 1, 9366, 13503, 4060, 605, 66, 7, 1;
[8] 1, 94586, 199815, 70564, 10845, 1086, 91, 8, 1;
[9] 1, 1091670, 3449631, 1471708, 243005, 23826, 1771, 120, 9, 1;
MAPLE
egf := exp(t) / (1 + x*(1 - exp(t))): sert := series(egf, t, 12):
col := k -> local j; seq(subs(x=k, j!*coeff(sert, t, j)), j=0..9):
T := (n, k) -> col(k)[n - k + 1]: # Triangle
for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jan 24 2024
with(combinat): # WP Worpitzky polynomials, WC coefficients of WP.
WC := (n, k) -> local j; add(eulerian1(n, j)*binomial(n-j, n-k), j=0..n):
WP := n -> local j; add(WC(n, j) * x^j, j=0..n):
A369435row := (n, k) -> subs(x = k, WP(n)):
seq(lprint(seq(A369435row(n, k), k = 0..7)), n = 0..7);
# Peter Luschny, Apr 26 2024
PROG
(PARI) {A(n, k) = n! * polcoeff(exp(x+x*O(x^n)) / (1+k-k*exp(x+x*O(x^n))), n)}
CROSSREFS
Cf. A000012 (col 0 and row 0), A000629 (col 1), A201339 (col 2), A201354 (col 3), A201365 (col 4), A000027 (row 1), A000384 (row 2), A163626, A028246.
Cf. A372312.
Sequence in context: A213936 A142589 A284308 * A172400 A226691 A158389
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Jan 23 2024
STATUS
approved