login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A380401
Triangle read by rows: T(n,k) is the number of necklace permutations of a multiset whose multiplicities are given by the k-th partition of n in graded reflected lexicographic order.
0
1, 1, 1, 2, 1, 1, 6, 3, 2, 1, 1, 24, 12, 6, 4, 2, 1, 1, 120, 60, 30, 16, 20, 10, 4, 5, 3, 1, 1, 720, 360, 180, 90, 120, 60, 30, 20, 30, 15, 5, 6, 3, 1, 1, 5040, 2520, 1260, 630, 318, 840, 420, 210, 140, 70, 210, 105, 54, 35, 10, 42, 21, 7, 7, 4, 1, 1, 40320, 20160, 10080, 5040, 2520, 6720, 3360, 1680, 840, 1120, 560, 188, 1680, 840, 420, 280, 140, 70, 336, 168, 84, 56, 14, 56, 28, 10, 8, 4, 1, 1
OFFSET
1,4
COMMENTS
See A318810 for a definition of necklace permutation.
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, pages 36-37, 42-43.
FORMULA
For a distribution of colors n1+n2+...+nm = n the number of necklaces is (1/n)*Sum_{d|gcd(n1,n2,...,nm)} phi(d) (n/d)!/Prod_{q=1..m} (nq/d)!
T(n,k) = A318810(A334434(n,k)).
EXAMPLE
The ordering of the partitions used here is graded reflected lexicographic illustrated below with n=5:
1,1,1,1,1 => 24
1,1,1,2 => 12
1,2,2 => 6
1,1,3 => 4
2,3 => 2
1,4 => 1
5 => 1
Table begins:
1
1,1
2,1,1
6,3,2,1,1
24,12,6,4,2,1,1
PROG
(PARI)
C(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, eulerphi(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n}
Row(n)={apply(C, vecsort([Vecrev(p) | p<-partitions(n)]))} \\ Andrew Howroyd, Jan 23 2025
CROSSREFS
Cf. A000041 (row lengths), A072605 (row sums), A080576 (graded reflected lexicographic order), A212359 (similar triangle for Abramowitz-Stegun order), A318810, A334434, A214609 (up to rotations and reflections).
Sequence in context: A284308 A369435 A172400 * A226691 A158389 A186287
KEYWORD
nonn,tabf,new
AUTHOR
Marko Riedel, Jan 23 2025
STATUS
approved