login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A214609 Table of numbers of distinct bracelets (reversible necklaces) with n beads corresponding to one partition P of n. Each part p of P corresponds to p beads of a distinct color. 1
1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 12, 6, 4, 2, 2, 1, 1, 60, 30, 16, 11, 10, 6, 3, 3, 3, 1, 1, 360, 180, 90, 48, 60, 30, 18, 10, 15, 9, 4, 3, 3, 1, 1, 2520, 1260, 630, 318, 171, 420, 210, 108, 70, 38, 105, 54, 33 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,7
LINKS
Washington Bomfim, Rows 1..25, flattened
Harold S. Grant, On a Formula for Circular Permutations, Mathematics Magazine, Vol. 23, No. 3 (Jan. - Feb., 1950), pp. 133-136.
Hiroshi Kajimoto and Mai Osabe, Circular and Necklace Permutations, Bulletin of the Faculty of Education, Nagasaki University. Natural Sciences 2006; v.74, 1-14.
S. Karim, J. Sawada, Z. Alamgirz, and S. M. Husnine, Generating bracelets with fixed content, (2011).
S. Karim, J. Sawada, Z. Alamgirz, and S. M. Husnine, Generating bracelets with fixed content, Theoretical Computer Science, Volume 475, 4 March 2013, Pages 103-112.
FORMULA
With S = Sum_( d | GCD of the parts of P ) { phi(d) * F(n/d, P/d) },
| (S+n*F((n-1)/2, [P/2]))/(2*n) if odd n, and only 1 odd part in P,
| S/(2*n) if odd n, and other P,
| (S + n * F(n/2, P/2)) / (2*n) if P has all even parts,
a(n)=| (S + n * F((n-2)/2, [P/2])) / (2*n)
| if even n, and P has exactly two odd parts,
| S/(2*n) if even n, and other P.
Where P is a partition of n, P/d is a vector of all the parts of P divided by d. Each element of vector [P/2] is equal to floor(p/2), p one part of P, and F(x,Y) = x! / (Y_1! * Y_2! * ...).
EXAMPLE
Table begins
. 1
. 1,1
. 1,1,1
. 3,2,2,1,1
.12,6,4,2,2,1,1
...
Line number 4 is 3,2,2,1,1 because three bracelets, (0 1 2 3), (0 1 3 2), and (0 2 1 3) correspond to partition [1 1 1 1]. (The colors are denoted by 0,1,2, and 3.) Bracelets (0 0 1 2), and (0 1 0 2) which have two beads of color 0, one of color 1, and one of color 2, correspond to [2 1 1]. (0 0 1 1), and (0 1 0 1) => [2 2]; (0 0 0 1) => [3 1], and (0 0 0 0) => [4].
PROG
(PARI)
N; L = 0; max_n = 25;
x = vector(max_n+1); P = vector(max_n+1); \\ P - partition of n
gcdP(t) = {if(t == 2, return(P[2])); GCD = gcd(P[2], P[3]);
for(J = 4, t, GCD = gcd(GCD, P[J])); return(GCD) }
x_P_div_d(t, d) = for(J = 2, t, x[J] = P[J]/d);
F(a, t)= { b = x[2]!; for(J = 3, t, b *= x[J]!); return(a!/b) }
Sum(t) = { S = 0; GCD = gcdP(t);
fordiv(GCD, d, x_P_div_d(t, d); S+= eulerphi(d) * F(N/d, t)); return(S) }
OneOdd(t) = {K = 0; for(J = 2, t, if(P[J] % 2 == 1, K++)); return(K==1)}
TwoOdd(t) = {K = 0; for(J = 2, t, if(P[J] % 2 == 1, K++)); return(K==2)}
x_floor_P_div_2(t) = for(J = 2, t, x[J] = floor(P[J]/2));
all_even_parts(t) = { for(J = 2, t, if(P[J] % 2 == 1, return(0) ) ); return(1) }
x_P_div_2(t) = for(J = 2, t, x[J] = P[J]/2);
\\
A(t) = {S = Sum(t); L++;
if((N%2==1) && OneOdd(t), x_floor_P_div_2(t);
print(L, " ", (S + N * F((N-1)/2, t))/(2*N)); return() );
if(N%2==1, print(L, " ", S/(2*N)); return() );
if(all_even_parts(t), x_P_div_2(t);
print(L, " ", (S + N * F(N/2, t))/(2*N)); return() );
if((N%2==0) && TwoOdd(t), x_floor_P_div_2(t);
print(L, " ", (S + N * F((N-2)/2, t))/(2*N)); return() );
print(L, " ", S/(2*N)) }
\\ F. Ruskey algorithm 4.24
Part(n, k, t) = { P[t] = k;
if(n == k, A(t), for(j = 1, min(k, n-k), Part(n-k, j, t+1) ) )}
for(n = 1, max_n, N = n; Part(2*n, n, 1) ); \\ b-file format
CROSSREFS
Cf. A000041 (row lengths), A213939 (another version with partitions found in a different order), A005654, A005656, A141783, A000010.
Sequence in context: A238402 A016558 A154395 * A152159 A341941 A090341
KEYWORD
nonn,tabf
AUTHOR
Washington Bomfim, Jul 22 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 01:11 EST 2023. Contains 367616 sequences. (Running on oeis4.)