OFFSET
0,4
FORMULA
Unsigned column 0 of matrix inverse forms A001192, which is the number of full sets of size n.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
6, 3, 1, 1;
32, 16, 5, 1, 1;
332, 166, 51, 9, 1, 1;
6928, 3464, 1059, 181, 17, 1, 1;
292334, 146167, 44620, 7557, 681, 33, 1, 1;
24875760, 12437880, 3795202, 641035, 57097, 2641, 65, 1, 1;
4254812880, 2127406440, 649054326, 109540639, 9723237, 443921, 10401, 129, 1, 1; ...
Matrix inverse of this triangle begins:
1;
-1,1;
-1,-1,1;
-2,-2,-1,1;
-9,-9,-4,-1,1;
-88,-88,-38,-8,-1,1;
-1802,-1802,-772,-156,-16,-1,1;
-75598,-75598,-32313,-6456,-632,-32,-1,1; ...
in which unsigned column 0 = A001192, number of full sets of size n.
PROG
(PARI) {T(n, k)=if(n==k, 1, polcoeff(-(1-x)*sum(m=0, n-k-1, T(m+k, k)*x^m/(1+x +x*O(x^n))^(2^(m+k)-2^k)), n-k))}
(PARI) {T(n, k)=local(M, N); M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(1/(1-x+O(x^(r-c+1)))^1*(1+x)^(2^(r-1)-2^(c-1)), r-c))); N=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(1/(1-x+O(x^(r-c+1)))^2*(1+x)^(2^(r-1)-2^(c-1)), r-c))); (M^-1*N)[n+1, k+1]}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
_Paul D. Hanna_, Feb 01 2010
STATUS
approved