login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172400
G.f.: 1/(1-x) = (1-x*y) * Sum_{k>=0} Sum_{n>=k} T(n,k)*x^n*y^k/(1+x)^(2^n-2^k).
3
1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 32, 16, 5, 1, 1, 332, 166, 51, 9, 1, 1, 6928, 3464, 1059, 181, 17, 1, 1, 292334, 146167, 44620, 7557, 681, 33, 1, 1, 24875760, 12437880, 3795202, 641035, 57097, 2641, 65, 1, 1, 4254812880, 2127406440, 649054326, 109540639
OFFSET
0,4
FORMULA
Unsigned column 0 of matrix inverse forms A001192, which is the number of full sets of size n.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
6, 3, 1, 1;
32, 16, 5, 1, 1;
332, 166, 51, 9, 1, 1;
6928, 3464, 1059, 181, 17, 1, 1;
292334, 146167, 44620, 7557, 681, 33, 1, 1;
24875760, 12437880, 3795202, 641035, 57097, 2641, 65, 1, 1;
4254812880, 2127406440, 649054326, 109540639, 9723237, 443921, 10401, 129, 1, 1; ...
Matrix inverse of this triangle begins:
1;
-1,1;
-1,-1,1;
-2,-2,-1,1;
-9,-9,-4,-1,1;
-88,-88,-38,-8,-1,1;
-1802,-1802,-772,-156,-16,-1,1;
-75598,-75598,-32313,-6456,-632,-32,-1,1; ...
in which unsigned column 0 = A001192, number of full sets of size n.
PROG
(PARI) {T(n, k)=if(n==k, 1, polcoeff(-(1-x)*sum(m=0, n-k-1, T(m+k, k)*x^m/(1+x +x*O(x^n))^(2^(m+k)-2^k)), n-k))}
(PARI) {T(n, k)=local(M, N); M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(1/(1-x+O(x^(r-c+1)))^1*(1+x)^(2^(r-1)-2^(c-1)), r-c))); N=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(1/(1-x+O(x^(r-c+1)))^2*(1+x)^(2^(r-1)-2^(c-1)), r-c))); (M^-1*N)[n+1, k+1]}
CROSSREFS
Cf. A001192, columns: A172401, A172402, A172403.
Sequence in context: A142589 A284308 A369435 * A226691 A158389 A186287
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 01 2010
STATUS
approved