The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172397 a(n) = a(n-1) + a(n-2) - a(n-3) - a(n-8), starting 1,1,2,2,3,3,4,4. 1
 1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 1, -2, -7, -13, -22, -32, -45, -58, -72, -83, -90, -88, -73, -39, 21, 113, 245, 420, 642, 905, 1200, 1502, 1776, 1965, 1994, 1763, 1150, 14, -1799, -4437, -8026, -12629, -18212, -24578, -31311, -37691, -42625, -44568, -41476 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1,0,0,0,0,-1). FORMULA G.f.: 1/(1 - x - x^2 + x^3 + x^8). MATHEMATICA f[-6]=0; f[-5]=0; f[-4]=0; f[-3]=0; f[-2]=0; f[-1]=0; f[0]=1; f[1]=1; f[n_]:= f[n] =f[n-1]+f[n-2]-f[n-3]-f[n-8]; Table[f[n], {n, 0, 50}] LinearRecurrence[{1, 1, -1, 0, 0, 0, 0, -1}, {1, 1, 2, 2, 3, 3, 4, 4}, 50] (* _Harvey P. Dale_, Nov 20 2012 *) PROG (PARI) my(x='x+O('x^50)); Vec(1/(1-x-x^2+x^3+x^8)) \\ _G. C. Greubel_, Mar 01 2019 (Magma) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x-x^2+x^3+x^8) )); // _G. C. Greubel_, Mar 01 2019 (Sage) (1/(1-x-x^2+x^3+x^8)).series(x, 50).coefficients(x, sparse=False) # _G. C. Greubel_, Mar 01 2019 (GAP) a:=[1, 1, 2, 2, 3, 3, 4, 4];; for n in [9..50] do a[n]:=a[n-1]+a[n-2]-a[n-3]-a[n-8]; od; a; # _G. C. Greubel_, Mar 01 2019 CROSSREFS Cf. A023438. Sequence in context: A079730 A035486 A282347 * A237815 A238701 A238134 Adjacent sequences: A172394 A172395 A172396 * A172398 A172399 A172400 KEYWORD sign,easy AUTHOR _Roger L. Bagula_, Nov 20 2010 EXTENSIONS More terms from _Harvey P. Dale_, Nov 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 15:08 EST 2024. Contains 370512 sequences. (Running on oeis4.)