login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A142589 Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals. 4
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 15, 4, 1, 1, 120, 105, 28, 5, 1, 1, 720, 945, 280, 45, 6, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1, 3628800, 34459425, 24344320, 5221125, 576576, 43225, 2640, 153, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Antidiagonal sums are {1, 2, 4, 11, 45, 260, 1998, 19735, 244797, 3729346, 68276276, ...}.

LINKS

G. C. Greubel, Antidiagonal rows n = 0..100, flattened

EXAMPLE

The transpose of the array is:

    1,    1,     1,     1,      1,      1,      1,      1,     1,

    1,    2,     3,     4,      5,      6,      7,      8,     9,

    1,    6,    15,    28,     45,     66,     91,     120,   153, ... A000384

    1,   24,   105,   280,    585,   1056,   1729,    2640,  3825, ... A011199

    1,  120,   945,  3640,   9945,  22176,  43225,   76560, 126225,... A011245

    1,  720, 10395, 58240, 208845, 576576, 1339975, 2756160,...

        /      |       \       \

   A000142  A001147  A007559  A007696

MAPLE

T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):

seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020

MATHEMATICA

T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i, 0, n}]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten

PROG

(PARI) T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );

for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020

(MAGMA)

function T(n, k)

  if k eq 0 or n eq 0 then return 1;

  else return (&*[j*k+1: j in [0..n]]);

  end if; return T; end function;

[T(n-k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020

(Sage)

def T(n, k):

    if (k==0 and n==0): return 1

    else: return product(j*k+1 for j in (0..n))

[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020

CROSSREFS

Cf. A000142, A006882(2n-1) = A001147, A007661(3n-2) = A007559, A007662(4n-3) = A007696, A153274.

Sequence in context: A181644 A144351 A213936 * A284308 A172400 A226691

Adjacent sequences:  A142586 A142587 A142588 * A142590 A142591 A142592

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula and Gary W. Adamson, Sep 22 2008

EXTENSIONS

Edited by M. F. Hasler, Oct 28 2014

More terms added by G. C. Greubel, Mar 05 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 10:33 EDT 2020. Contains 333239 sequences. (Running on oeis4.)