OFFSET
0,5
COMMENTS
Antidiagonal sums are {1, 2, 4, 11, 45, 260, 1998, 19735, 244797, 3729346, 68276276, ...}.
LINKS
G. C. Greubel, Antidiagonal rows n = 0..100, flattened
EXAMPLE
The transpose of the array is:
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 6, 15, 28, 45, 66, 91, 120, 153, ... A000384
1, 24, 105, 280, 585, 1056, 1729, 2640, 3825, ... A011199
1, 120, 945, 3640, 9945, 22176, 43225, 76560, 126225,... A011245
1, 720, 10395, 58240, 208845, 576576, 1339975, 2756160,...
/ | \ \
MAPLE
T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):
seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020
MATHEMATICA
T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i, 0, n}]]; Table[T[n-k, k], {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(PARI) T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );
for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020
(Magma)
function T(n, k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n]]);
end if; return T; end function;
[T(n-k, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020
(Sage)
def T(n, k):
if (k==0 and n==0): return 1
else: return product(j*k+1 for j in (0..n))
[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Sep 22 2008
EXTENSIONS
Edited by M. F. Hasler, Oct 28 2014
More terms added by G. C. Greubel, Mar 05 2020
STATUS
approved