login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.
4

%I #20 Sep 08 2022 08:45:36

%S 1,1,1,1,2,1,1,6,3,1,1,24,15,4,1,1,120,105,28,5,1,1,720,945,280,45,6,

%T 1,1,5040,10395,3640,585,66,7,1,1,40320,135135,58240,9945,1056,91,8,1,

%U 1,362880,2027025,1106560,208845,22176,1729,120,9,1,1,3628800,34459425,24344320,5221125,576576,43225,2640,153,10,1

%N Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.

%C Antidiagonal sums are {1, 2, 4, 11, 45, 260, 1998, 19735, 244797, 3729346, 68276276, ...}.

%H G. C. Greubel, <a href="/A142589/b142589.txt">Antidiagonal rows n = 0..100, flattened</a>

%e The transpose of the array is:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1,

%e 1, 2, 3, 4, 5, 6, 7, 8, 9,

%e 1, 6, 15, 28, 45, 66, 91, 120, 153, ... A000384

%e 1, 24, 105, 280, 585, 1056, 1729, 2640, 3825, ... A011199

%e 1, 120, 945, 3640, 9945, 22176, 43225, 76560, 126225,... A011245

%e 1, 720, 10395, 58240, 208845, 576576, 1339975, 2756160,...

%e / | \ \

%e A000142 A001147 A007559 A007696

%p T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):

%p seq(seq(T(n-k, k), k=0..n), n=0..12); # _G. C. Greubel_, Mar 05 2020

%t T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i,0,n}]]; Table[T[n-k, k], {n,0,10}, {k,0,n}]//Flatten

%o (PARI) T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );

%o for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ _G. C. Greubel_, Mar 05 2020

%o (Magma)

%o function T(n,k)

%o if k eq 0 or n eq 0 then return 1;

%o else return (&*[j*k+1: j in [0..n]]);

%o end if; return T; end function;

%o [T(n-k,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Mar 05 2020

%o (Sage)

%o def T(n, k):

%o if (k==0 and n==0): return 1

%o else: return product(j*k+1 for j in (0..n))

%o [[T(n-k, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Mar 05 2020

%Y Cf. A000142, A006882(2n-1) = A001147, A007661(3n-2) = A007559, A007662(4n-3) = A007696, A153274.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_ and _Gary W. Adamson_, Sep 22 2008

%E Edited by _M. F. Hasler_, Oct 28 2014

%E More terms added by _G. C. Greubel_, Mar 05 2020