login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A142586 Binomial transform of A014217. 2
1, 2, 5, 14, 39, 107, 290, 779, 2079, 5522, 14615, 38579, 101634, 267347, 702455, 1844114, 4838079, 12686507, 33254210, 87141659, 228301839, 598026002, 1566300455, 4101923939, 10741568514, 28126975907, 73647747815, 192833044754, 504884940879, 1321888886747 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The second term in the k-th iterated differences is 2, 3, 6, 10, 17, 28, 46, ... = A001610(k+1).
LINKS
Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
FORMULA
From R. J. Mathar, Sep 22 2008: (Start)
G.f.: (1 - 3*x + 2*x^2 + x^3)/((1-3*x+x^2)*(1-2*x)).
a(n) = A005248(n) - 2^(n-1), n>0. (End)
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3); a(0)=1, a(1)=2, a(2)=5, a(3)=14. - Harvey P. Dale, Aug 08 2011
a(n) = (-2^(-1+n) + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n) for n > 0. - Colin Barker, Jun 05 2017
MAPLE
1, seq(combinat[fibonacci](2*n+1) +combinat[fibonacci](2*n-1) -2^(n-1), n = 1..30); # G. C. Greubel, Apr 13 2021
MATHEMATICA
CoefficientList[Series[(1-3x+2x^2+x^3)/((1-3x+x^2)(1-2x)), {x, 0, 30}], x] (* or *) Join[{1}, LinearRecurrence[{5, -7, 2}, {2, 5, 14}, 30]] (* Harvey P. Dale, Aug 08 2011 *)
PROG
(PARI) Vec((1-3*x+2*x^2+x^3)/((1-3*x+x^2)*(1-2*x)) + O(x^30)) \\ Colin Barker, Jun 05 2017
(Magma) [1] cat [Lucas(2*n) - 2^(n-1): n in [1..30]]; // G. C. Greubel, Apr 13 2021
(Sage) [1]+[lucas_number2(2*n, 1, -1) -2^(n-1) for n in (1..30)] # G. C. Greubel, Apr 13 2021
CROSSREFS
Sequence in context: A331573 A141752 A291729 * A202207 A132834 A000641
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 21 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Sep 22 2008
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 04:31 EST 2023. Contains 367574 sequences. (Running on oeis4.)