OFFSET
1,1
COMMENTS
A Pochhammer function-based triangular sequence.
Row sums are: {2, 21, 409, 14650, 854776, 73920791, 8878927331, 1413788600036, 288152651134776, 73152069870215127, ...}.
LINKS
G. C. Greubel, Rows n = 1..100 of triangle, flattened
FORMULA
T(n, k) = k^(n+1) * Pochmammer(1/k, n+1).
T(n, k) = Product_{j=0..n} (j*k + 1). - G. C. Greubel, Mar 05 2020
EXAMPLE
Triangle begins as:
2;
6, 15;
24, 105, 280;
120, 945, 3640, 9945;
720, 10395, 58240, 208845, 576576;
5040, 135135, 1106560, 5221125, 17873856, 49579075;
40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
MAPLE
seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # G. C. Greubel, Mar 05 2020
MATHEMATICA
Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
Table[k^(n+1)*Pochhammer[1/k, n+1], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
PROG
(PARI) T(n, k) = prod(j=0, n, j*k+1);
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
(Magma) [(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2020
(Sage) [[k^(n+1)*rising_factorial(1/k, n+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 05 2020
(GAP) Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # G. C. Greubel, Mar 05 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Dec 22 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 05 2020
STATUS
approved