The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153277 Array read by antidiagonals of higher order Bell numbers. 3
 1, 1, 2, 1, 3, 5, 1, 4, 12, 15, 1, 5, 22, 60, 52, 1, 6, 35, 154, 358, 203, 1, 7, 51, 315, 1304, 2471, 877, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 10, 117, 1380, 14532, 120196, 660665, 1855570, 1606137, 115975 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Mezo's abstract: The powers of matrices with Stirling number-coefficients are investigated. It is revealed that the elements of these matrices have a number of properties of the ordinary Stirling numbers. Moreover, "higher order" Bell, Fubini and Eulerian numbers can be defined. Hence we give a new interpretation for E. T. Bell's iterated exponential integers. In addition, it is worth to note that these numbers appear in combinatorial physics, in the problem of the normal ordering of quantum field theoretical operators. LINKS E. T. Bell, The iterated exponential integers, Ann. Math. 39(3) (1938), 539-557. J. Ginsburg, Iterated exponentials, Scripta Math., 11 (1945), 340-353. Istvan Mezo, On powers of Stirling matrices, arXiv:0812.4047. K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela, A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, J.Phys. A: Math.Gen. 37 3475-3487 (2004). EXAMPLE The table on p.4 of Mezo begins: =========================================================== B_p,n|n=1|n=2|n=3.|.n=4.|..n=5.|....n=6.|.....n=7.|comment =========================================================== p=1..|.1.|.2.|..5.|..15.|...52.|....203.|.....877.|.A000110 p=2..|.1.|.3.|.12.|..60.|..358.|...2471.|...19302.|.A000258 p=3..|.1.|.4.|.22.|.154.|.1304.|..12915.|..146115.|.A000307 p=4..|.1.|.5.|.35.|.315.|.3455.|..44590.|..660665.|.A000357 p=5..|.1.|.6.|.51.|.561.|.7556.|.120196.|.2201856.|.A000405 =========================================================== MAPLE g:= proc(a) local b; b:=proc(n) option remember; if n=0 then 1 else (n-1)! *add (a(k)* b(n-k)/ (k-1)!/ (n-k)!, k=1..n) fi end end: B:= (p, n)-> (g@@p)(1)(n): seq(seq(B(d-n, n), n=1..d-1), d=1..12); # Alois P. Heinz, Feb 02 2009 MATHEMATICA g[k_] := g[k] = Nest[Function[x, E^x-1], x, k]; a[n_, k_] := SeriesCoefficient[ 1+g[k+1], {x, 0, n}]*n!; Table[a[n, k-n+1], {k, 1, 12}, {n, 1, k}] // Flatten (* Jean-François Alcover, Jan 28 2015 *) CROSSREFS Cf. A000110, A000258, A000307, A000357, A000405, A111672. From Alois P. Heinz, Feb 02 2009: (Start) Truncated and reflected version of A144150. Cf. A001669, A081624, A081629, A081697, A081740, A000326, A005945. (End) Sequence in context: A134247 A210225 A180906 * A104029 A208752 A119308 Adjacent sequences:  A153274 A153275 A153276 * A153278 A153279 A153280 KEYWORD easy,nonn,tabl AUTHOR Jonathan Vos Post, Dec 22 2008 EXTENSIONS More terms from Alois P. Heinz, Feb 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 02:21 EDT 2021. Contains 343909 sequences. (Running on oeis4.)