OFFSET
0,2
FORMULA
G.f.: A(x, y) = (1-x*y)/(1 - 2*x*(1+y) + x^2*(1+y+y^2) ).
T(n, k) = [x^(2k)](1+x+x^2)^n + [x^(2k+1)](1+x+x^2)^n.
EXAMPLE
Row 3: {4,13,9,1} is formed from the pairwise sums
of row 3 of A027907: {1,3, 6,7, 6,3, 1}.
Rows begin:
1;
2, 1;
3, 5, 1;
4, 13, 9, 1;
5, 26, 35, 14, 1;
6, 45, 96, 75, 20, 1;
7, 71, 216, 267, 140, 27, 1;
8, 105, 427, 750, 623, 238, 35, 1;
9, 148, 770, 1800, 2123, 1288, 378, 44, 1;
10, 201, 1296, 3858, 6046, 5211, 2436, 570, 54, 1;
11, 265, 2067, 7590, 15115, 17303, 11505, 4302, 825, 65, 1;
12, 341, 3157, 13959, 34210, 49721, 43923, 23397, 7194, 1155, 77, 1; ...
PROG
(PARI) {T(n, k)=polcoeff((1+x+x^2)^n+x*O(x^(2*k)), 2*k)+ polcoeff((1+x+x^2)^n+x*O(x^(2*k+1)), 2*k+1)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) {T(n, k)=polcoeff(polcoeff((1-x*y)/(1-2*x*(1+y)+x^2*(1+y+y^2)) +x*O(x^n), n, x)+y*O(y^k), k, y)}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 26 2005
STATUS
approved