login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119308
Triangle for first differences of Catalan numbers.
4
1, 2, 1, 3, 5, 1, 4, 14, 9, 1, 5, 30, 40, 14, 1, 6, 55, 125, 90, 20, 1, 7, 91, 315, 385, 175, 27, 1, 8, 140, 686, 1274, 980, 308, 35, 1, 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1, 10, 285, 2430, 8568, 14112, 11340, 4410, 780, 54, 1, 11, 385, 4125
OFFSET
0,2
COMMENTS
Row sums are A000245(n+1). Columns include A000330, A006414, as well as certain Kekulé numbers (A114242, A108647, ...).
Diagonal sums are A188460.
Coefficient array of the second column of the inverse of the Riordan array ((1+r*x)/(1+(r+1)x+r*x^2), x/(1+(r+1)x+r*x^2)). - Paul Barry, Apr 01 2011
LINKS
Indranil Ghosh, Rows 0..100, flattened
Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
FORMULA
T(n,k) = Sum_{j=0..n} C(n,j)*[k<=j]*C(j+1,k+1)*C(k+1,j-k)/(j-k+1).
Column k has g.f.: sum{j=0..k, C(k,j)*C(k+1,j)x^j/(j+1)}*x^k/(1-x)^(2(k+1)).
T(n,k) = Sum_{j=0..n} C(n,j)*if(k<=j, C(j+1,2(j-k))*A000108(j-k), 0).
G.f.: (((x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+(-x^2-x)*y+x^2-2*x+1)/(2*x^3*y^2)). - Vladimir Kruchinin, Nov 15 2020
T(n,k) = C(n+1,k)*(2*C(n+1,k+2)+C(n+1,k+1))/(n+1). - Vladimir Kruchinin, Nov 16 2020
EXAMPLE
Triangle begins:
1;
2, 1;
3, 5, 1;
4, 14, 9, 1;
5, 30, 40, 14, 1;
6, 55, 125, 90, 20, 1;
7, 91, 315, 385, 175, 27, 1;
8, 140, 686, 1274, 980, 308, 35, 1;
9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;
MATHEMATICA
a[k_, j_]:=If[k<=j, Binomial[j+1, 2(j-k)]*CatalanNumber[j-k], 0];
Flatten[Table[Sum[Binomial[n, j]*a[k, j], {j, 0, n}], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 03 2017 *)
PROG
(PARI)
catalan(n)=binomial(2*n, n)/(n+1);
a(k, j)=if (k<=j, binomial(j+1, 2*(j-k))*catalan(j-k), 0);
tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n, j)*a(k, j)), ", "); ); print(); ); };
tabl(10); \\ Indranil Ghosh, Mar 03 2017
CROSSREFS
Sequence in context: A153277 A104029 A208752 * A110197 A124819 A124019
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 13 2006
STATUS
approved