OFFSET
0,2
COMMENTS
LINKS
Indranil Ghosh, Rows 0..100, flattened
Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
FORMULA
T(n,k) = Sum_{j=0..n} C(n,j)*[k<=j]*C(j+1,k+1)*C(k+1,j-k)/(j-k+1).
Column k has g.f.: sum{j=0..k, C(k,j)*C(k+1,j)x^j/(j+1)}*x^k/(1-x)^(2(k+1)).
T(n,k) = Sum_{j=0..n} C(n,j)*if(k<=j, C(j+1,2(j-k))*A000108(j-k), 0).
G.f.: (((x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+(-x^2-x)*y+x^2-2*x+1)/(2*x^3*y^2)). - Vladimir Kruchinin, Nov 15 2020
T(n,k) = C(n+1,k)*(2*C(n+1,k+2)+C(n+1,k+1))/(n+1). - Vladimir Kruchinin, Nov 16 2020
EXAMPLE
Triangle begins:
1;
2, 1;
3, 5, 1;
4, 14, 9, 1;
5, 30, 40, 14, 1;
6, 55, 125, 90, 20, 1;
7, 91, 315, 385, 175, 27, 1;
8, 140, 686, 1274, 980, 308, 35, 1;
9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;
MATHEMATICA
a[k_, j_]:=If[k<=j, Binomial[j+1, 2(j-k)]*CatalanNumber[j-k], 0];
Flatten[Table[Sum[Binomial[n, j]*a[k, j], {j, 0, n}], {n, 0, 10}, {k, 0, n}]] (* Indranil Ghosh, Mar 03 2017 *)
PROG
(PARI)
catalan(n)=binomial(2*n, n)/(n+1);
a(k, j)=if (k<=j, binomial(j+1, 2*(j-k))*catalan(j-k), 0);
tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n, j)*a(k, j)), ", "); ); print(); ); };
tabl(10); \\ Indranil Ghosh, Mar 03 2017
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, May 13 2006
STATUS
approved