login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle for first differences of Catalan numbers.
4

%I #40 Sep 13 2024 03:31:34

%S 1,2,1,3,5,1,4,14,9,1,5,30,40,14,1,6,55,125,90,20,1,7,91,315,385,175,

%T 27,1,8,140,686,1274,980,308,35,1,9,204,1344,3528,4116,2184,504,44,1,

%U 10,285,2430,8568,14112,11340,4410,780,54,1,11,385,4125

%N Triangle for first differences of Catalan numbers.

%C Row sums are A000245(n+1). Columns include A000330, A006414, as well as certain Kekulé numbers (A114242, A108647, ...).

%C Diagonal sums are A188460.

%C Coefficient array of the second column of the inverse of the Riordan array ((1+r*x)/(1+(r+1)x+r*x^2), x/(1+(r+1)x+r*x^2)). - _Paul Barry_, Apr 01 2011

%H Indranil Ghosh, <a href="/A119308/b119308.txt">Rows 0..100, flattened</a>

%H Lin Yang and Shengliang Yang, <a href="https://doi.org/10.4208/jms.v56n1.23.01">Protected Branches in Ordered Trees</a>, J. Math. Study (2023) Vol. 56, No. 1, 1-17.

%F T(n,k) = Sum_{j=0..n} C(n,j)*[k<=j]*C(j+1,k+1)*C(k+1,j-k)/(j-k+1).

%F Column k has g.f.: sum{j=0..k, C(k,j)*C(k+1,j)x^j/(j+1)}*x^k/(1-x)^(2(k+1)).

%F T(n,k) = Sum_{j=0..n} C(n,j)*if(k<=j, C(j+1,2(j-k))*A000108(j-k), 0).

%F G.f.: (((x-1)*sqrt(x^2*y^2+(-2*x^2-2*x)*y+x^2-2*x+1)+(-x^2-x)*y+x^2-2*x+1)/(2*x^3*y^2)). - _Vladimir Kruchinin_, Nov 15 2020

%F T(n,k) = C(n+1,k)*(2*C(n+1,k+2)+C(n+1,k+1))/(n+1). - _Vladimir Kruchinin_, Nov 16 2020

%e Triangle begins:

%e 1;

%e 2, 1;

%e 3, 5, 1;

%e 4, 14, 9, 1;

%e 5, 30, 40, 14, 1;

%e 6, 55, 125, 90, 20, 1;

%e 7, 91, 315, 385, 175, 27, 1;

%e 8, 140, 686, 1274, 980, 308, 35, 1;

%e 9, 204, 1344, 3528, 4116, 2184, 504, 44, 1;

%t a[k_,j_]:=If[k<=j,Binomial[j+1,2(j-k)]*CatalanNumber[j-k],0];

%t Flatten[Table[Sum[Binomial[n,j]*a[k,j],{j,0,n}],{n,0,10},{k,0,n}]] (* _Indranil Ghosh_, Mar 03 2017 *)

%o (PARI)

%o catalan(n)=binomial(2*n,n)/(n+1);

%o a(k,j)=if (k<=j,binomial(j+1,2*(j-k))*catalan(j-k),0);

%o tabl(nn)={for (n=0, nn, for (k=0, n, print1(sum(j=0, n, binomial(n,j)*a(k,j)),", "););print(););};

%o tabl(10); \\ _Indranil Ghosh_, Mar 03 2017

%Y Cf. A000108, A001263.

%K easy,nonn,tabl

%O 0,2

%A _Paul Barry_, May 13 2006