login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124019
Triangle read by rows: T(0,0)=1; for n>=1 T(n,k) is the coefficient of x^k in the monic characteristic polynomial of the n X n band matrix with main diagonal 2,3,3,..., subdiagonal -3,-3,-3,..., sub-subdiagonal 1,1,1,... and superdiagonal -1,-1,-1,... (0<=k<=n).
1
1, -2, 1, 3, -5, 1, -4, 15, -8, 1, 5, -35, 36, -11, 1, -6, 70, -120, 66, -14, 1, 7, -126, 330, -286, 105, -17, 1, -8, 210, -792, 1001, -560, 153, -20, 1, 9, -330, 1716, -3003, 2380, -969, 210, -23, 1, -10, 495, -3432, 8008, -8568, 4845, -1540, 276, -26, 1, 11, -715, 6435, -19448, 27132, -20349, 8855, -2300, 351, -29, 1
OFFSET
0,2
EXAMPLE
For n=5 the matrix is
+2 -1 +0 +0 +0
-3 +3 -1 +0 +0
+1 -3 +3 -1 +0
+0 +1 -3 +3 -1
+0 +0 +1 -3 +3
Triangle starts:
1,
-2, 1,
3, -5, 1,
-4, 15, -8, 1,
5, -35, 36, -11, 1,
-6, 70, -120, 66, -14, 1,
7, -126, 330, -286, 105, -17, 1,
MAPLE
with(linalg): m:=proc(i, j) if i=1 and j=1 then 2 elif i=j then 3 elif j-i=1 then -1 elif i-j=1 then -3 elif i-j=2 then 1 else 0 fi end: T:=proc(n, k) if n=0 and k=0 then 1 elif n>0 and k<=n then coeff(charpoly(matrix(n, n, m), x), x, k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A119308 A110197 A124819 * A337886 A337884 A337883
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Dec 03 2006
STATUS
approved