OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/2 and p. 105, eq. (ii) K(Ob(2,4,n))).
LINKS
Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
FORMULA
G.f.: (1+x)(1 + 5x + x^2)/(1-x)^8.
a(n-2) = (1/6) * Sum_{1 <= x_1, x_2 <= n} (x_1)^2*x_2*(det V(x_1,x_2))^2 = (1/6)*Sum_{1 <= i,j <= n} i^2*j*(i-j)^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Harvey P. Dale, Aug 21 2013
From Amiram Eldar, May 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 3550 - 5120*log(2).
Sum_{n>=0} (-1)^n/a(n) = 3430 - 1280*Pi + 60*Pi^2. (End)
MAPLE
a:=n->(n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n+5)/720: seq(a(n), n=0..30);
MATHEMATICA
Table[((n+1)(n+2)^2 (n+3)^2 (n+4)(2n+5))/720, {n, 0, 30}] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {1, 14, 90, 385, 1274, 3528, 8568, 18810}, 30] (* Harvey P. Dale, Aug 21 2013 *)
PROG
(PARI) a(n)=(n+1)*(n+2)^2*(n+3)^2*(n+4)*(2*n+5)/720 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 18 2005
STATUS
approved