login
A107891
a(n) = (n+1)*(n+2)^2*(n+3)^2*(n+4)*(3n^2 + 15n + 20)/2880.
7
1, 19, 155, 805, 3136, 9996, 27468, 67320, 150645, 313027, 611611, 1134497, 2012920, 3436720, 5673648, 9093096, 14194881, 21643755, 32310355, 47319349, 68105576, 96479020, 134699500, 185562000, 252493605, 339663051, 452103939
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
Partial sums of A114239. First differences of A047819. - Peter Bala, Sep 21 2007
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 167, 187 and p. 105 eq. (iii) for k=2 and m=5).
LINKS
Paolo Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n-2) = (1/8) * Sum_{1 <= x_1, x_2 <= n} (x_1*x_2)^2*(det V(x_1,x_2))^2 = 1/8*sum {1 <= i,j <= n} (i*j*(i-j))^2, where V(x_1,x_2) is the Vandermonde matrix of order 2. - Peter Bala, Sep 21 2007
G.f.: (1+10*x+20*x^2+10*x^3+x^4)/(1-x)^9. - Colin Barker, Feb 08 2012
a(n) = (A000330(n+2)*A000538(n+2) - (A000537(n+2))^2)/4. - J. M. Bergot, Sep 17 2013
Sum_{n>=0} 1/a(n) = 17095/4 - 240*Pi^2 - 162*sqrt(15)*Pi*tanh(sqrt(5/3)*Pi/2). - Amiram Eldar, May 29 2022
MAPLE
a:=n->(1/2880)*(n+1)*(n+2)^2*(n+3)^2*(n+4)*(3*n^2+15*n+20): seq(a(n), n=0..32);
MATHEMATICA
Table[((1+n) (2+n)^2 (3+n)^2 (4+n) (20+3 n (5+n)))/2880, {n, 0, 40}] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 19, 155, 805, 3136, 9996, 27468, 67320, 150645}, 40] (* Harvey P. Dale, Dec 10 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jun 12 2005
STATUS
approved