login
A107894
Sum over the products of factorials of parts in all partitions of n where the sum runs over the number of different parts only.
3
1, 1, 3, 9, 35, 167, 943, 6379, 48945, 429651, 4189865, 45307601, 535518109, 6883110373, 95435065935, 1420468921893, 22577620176887, 381695573051099, 6837601709298811, 129375694813679215, 2578070946813526485, 53964818587883937807, 1183805926540690127573
OFFSET
0,3
LINKS
FORMULA
a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 65/n^4 + 443/n^5 + 3626/n^6 + 34811/n^7 + 384479/n^8 + 4806098/n^9 + 67109281/n^10), for coefficients see A256124. - Vaclav Kotesovec, Mar 15 2015
EXAMPLE
The partitions of 5 are 1+1+1+1+1, 1+1+1+2, 1+1+3, 1+2+2, 1+4, 2+3, 5, the corresponding products of factorials of parts are (when multiple parts are counted once only) 1!, 1!*2!, 1!*3!, 1!*2!, 1!*4!, 2!*3!, 5! and their sum is a(5) = 167.
MAPLE
b:= proc(n, i) option remember;
`if`(n=0 or i<2, 1, b(n, i-1) +i!*add(b(n-i*j, i-1), j=1..n/i))
end:
a:= n-> b(n, n):
seq(a(n), n=0..30); # Alois P. Heinz, Apr 04 2012
MATHEMATICA
Total[Times@@@(Union/@IntegerPartitions[#]!)]&/@Range[20] (* Harvey P. Dale, Feb 26 2011 *)
b[n_, i_] := b[n, i] = If[n==0 || i<2, 1, b[n, i-1] + i!*Sum[b[n-i*j, i-1], {j, 1, n/i}]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Wieder, May 26 2005
EXTENSIONS
a(0) inserted and more terms from Alois P. Heinz, Apr 04 2012
STATUS
approved