The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077365 Sum of products of factorials of parts in all partitions of n. 17
 1, 1, 3, 9, 37, 169, 981, 6429, 49669, 430861, 4208925, 45345165, 536229373, 6884917597, 95473049469, 1420609412637, 22580588347741, 381713065286173, 6837950790434781, 129378941557961565, 2578133190722896861, 53965646957320869469, 1183822028149936497501 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Row sums of arrays A069123 and A134133. Row sums of triangle A134134. LINKS Vincenzo Librandi and Alois P. Heinz, Table of n, a(n) for n = 0..450 (terms n = 0..70 from Vincenzo Librandi) J.-P. Bultel, A, Chouria, J.-G. Luque and O. Mallet, Word symmetric functions and the Redfield-Polya theorem, 2013. FORMULA G.f.: 1/Product_{m>0} (1-m!*x^m). Recurrence: a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(k/d). a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 67/n^4 + 457/n^5 + 3734/n^6 + 35741/n^7 + 392875/n^8 + 4886114/n^9 + 67924417/n^10), for coefficients see A256125. - Vaclav Kotesovec, Mar 14 2015 G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j!)^k*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018 EXAMPLE The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products of factorials of parts are 24,6,4,2,1 and their sum is a(4) = 37. 1 + x + 3 x^2 + 9 x^3 + 37 x^4 + 169 x^5 + 981 x^6 + 6429 x^7 + 49669 x^8 + ... MAPLE b:= proc(n, i, j) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+ `if`(i>n, 0, j^i*b(n-i, i, j+1)))) end: a:= n-> b(n\$2, 1): seq(a(n), n=0..40); # Alois P. Heinz, Aug 03 2013 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)*i!))) end: a:= n-> b(n\$2): seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016 MATHEMATICA Table[Plus @@ Map[Times @@ (#!) &, IntegerPartitions[n]], {n, 0, 20}] (* Olivier Gérard, Oct 22 2011 *) a[ n_] := If[ n < 0, 0, Plus @@ Times @@@ (IntegerPartitions[ n] !)] (* Michael Somos, Feb 09 2012 *) nmax=20; CoefficientList[Series[Product[1/(1-k!*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *) b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, If[i<1, 0, b[n, i-1, j] + If[i>n, 0, j^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *) PROG (PARI) N=66; q='q+O('q^N); gf= 1/prod(n=1, N, (1-n!*q^n) ); Vec(gf) /* Joerg Arndt, Oct 06 2012 */ CROSSREFS Cf. A006906, A074141, A256125, A265950. Cf. A069123, A134133, A134134. Cf. A051296 (with compositions instead of partitions). Sequence in context: A358397 A245890 A119856 * A319119 A006229 A321734 Adjacent sequences: A077362 A077363 A077364 * A077366 A077367 A077368 KEYWORD nonn AUTHOR Vladeta Jovovic, Nov 30 2002 EXTENSIONS Unnecessarily complicated mma code deleted by N. J. A. Sloane, Sep 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 10:41 EDT 2023. Contains 365520 sequences. (Running on oeis4.)