OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450 (terms n = 0..70 from Vincenzo Librandi)
J.-P. Bultel, A, Chouria, J.-G. Luque and O. Mallet, Word symmetric functions and the Redfield-Polya theorem, 2013.
FORMULA
G.f.: 1/Product_{m>0} (1-m!*x^m).
Recurrence: a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(k/d).
a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 67/n^4 + 457/n^5 + 3734/n^6 + 35741/n^7 + 392875/n^8 + 4886114/n^9 + 67924417/n^10), for coefficients see A256125. - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j!)^k*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018
EXAMPLE
The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products of factorials of parts are 24,6,4,2,1 and their sum is a(4) = 37.
1 + x + 3 x^2 + 9 x^3 + 37 x^4 + 169 x^5 + 981 x^6 + 6429 x^7 + 49669 x^8 + ...
MAPLE
b:= proc(n, i, j) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+
`if`(i>n, 0, j^i*b(n-i, i, j+1))))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 03 2013
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i)*i!)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
MATHEMATICA
Table[Plus @@ Map[Times @@ (#!) &, IntegerPartitions[n]], {n, 0, 20}] (* Olivier Gérard, Oct 22 2011 *)
a[ n_] := If[ n < 0, 0, Plus @@ Times @@@ (IntegerPartitions[ n] !)] (* Michael Somos, Feb 09 2012 *)
nmax=20; CoefficientList[Series[Product[1/(1-k!*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, If[i<1, 0, b[n, i-1, j] + If[i>n, 0, j^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Nov 30 2002
EXTENSIONS
Unnecessarily complicated mma code deleted by N. J. A. Sloane, Sep 21 2009
STATUS
approved