login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077365
Sum of products of factorials of parts in all partitions of n.
17
1, 1, 3, 9, 37, 169, 981, 6429, 49669, 430861, 4208925, 45345165, 536229373, 6884917597, 95473049469, 1420609412637, 22580588347741, 381713065286173, 6837950790434781, 129378941557961565, 2578133190722896861, 53965646957320869469, 1183822028149936497501
OFFSET
0,3
COMMENTS
Row sums of arrays A069123 and A134133. Row sums of triangle A134134.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..450 (terms n = 0..70 from Vincenzo Librandi)
J.-P. Bultel, A, Chouria, J.-G. Luque and O. Mallet, Word symmetric functions and the Redfield-Polya theorem, 2013.
FORMULA
G.f.: 1/Product_{m>0} (1-m!*x^m).
Recurrence: a(n) = 1/n*Sum_{k=1..n} b(k)*a(n-k), where b(k) = Sum_{d divides k} d*d!^(k/d).
a(n) ~ n! * (1 + 1/n + 3/n^2 + 12/n^3 + 67/n^4 + 457/n^5 + 3734/n^6 + 35741/n^7 + 392875/n^8 + 4886114/n^9 + 67924417/n^10), for coefficients see A256125. - Vaclav Kotesovec, Mar 14 2015
G.f.: exp(Sum_{k>=1} Sum_{j>=1} (j!)^k*x^(j*k)/k). - Ilya Gutkovskiy, Jun 18 2018
EXAMPLE
The partitions of 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, the corresponding products of factorials of parts are 24,6,4,2,1 and their sum is a(4) = 37.
1 + x + 3 x^2 + 9 x^3 + 37 x^4 + 169 x^5 + 981 x^6 + 6429 x^7 + 49669 x^8 + ...
MAPLE
b:= proc(n, i, j) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+
`if`(i>n, 0, j^i*b(n-i, i, j+1))))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 03 2013
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i)*i!)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, May 11 2016
MATHEMATICA
Table[Plus @@ Map[Times @@ (#!) &, IntegerPartitions[n]], {n, 0, 20}] (* Olivier Gérard, Oct 22 2011 *)
a[ n_] := If[ n < 0, 0, Plus @@ Times @@@ (IntegerPartitions[ n] !)] (* Michael Somos, Feb 09 2012 *)
nmax=20; CoefficientList[Series[Product[1/(1-k!*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
b[n_, i_, j_] := b[n, i, j] = If[n==0, 1, If[i<1, 0, b[n, i-1, j] + If[i>n, 0, j^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 12 2015, after Alois P. Heinz *)
PROG
(PARI)
N=66; q='q+O('q^N);
gf= 1/prod(n=1, N, (1-n!*q^n) );
Vec(gf)
/* Joerg Arndt, Oct 06 2012 */
CROSSREFS
Cf. A051296 (with compositions instead of partitions).
Sequence in context: A358397 A245890 A119856 * A366433 A319119 A006229
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Nov 30 2002
EXTENSIONS
Unnecessarily complicated mma code deleted by N. J. A. Sloane, Sep 21 2009
STATUS
approved