login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101880 Number of arrangements of the partitions of n (e.g., 111 counts for 6). 10
1, 1, 3, 9, 35, 161, 913, 6103, 47319, 416235, 4092155, 44424095, 527511445, 6798907249, 94504286703, 1408973416617, 22426222745159, 379522092608177, 6804315177704869, 128828842646944135, 2568533750228603835, 53788282243854336411, 1180357162840624656959 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..450

Jon Perry, Partition Tables

FORMULA

a(n) = Sum_{i=1..n} P(n, i)*i!, where P(n, i) is the number of partitions of n into i parts.

G.f.: Sum_{n=1..infinity} (n!*x^n / Product_{k=1..n} (1-x^k)). - Vladeta Jovovic, Jan 29 2005

G.f.: ( 1 - G(0) )/(1-x) where G(k) =  1 - (k+1)/(1-x^(k+1))/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 22 2013

a(n) ~ n! * (1 + 1/n + 2/n^2 + 5/n^3 + 16/n^4 + 60/n^5 + 253/n^6 + 1180/n^7 + 6023/n^8 + 33306/n^9 + 197719/n^10 + ...), for coefficients see A331826. - Vaclav Kotesovec, Jan 28 2020

EXAMPLE

a(3) = 9 as we have 3, 12 (2) and 111 (6).

a(4) = 35 as 4, 31 (2), 22 (2), 211 (6) and 1111 (24).

MAPLE

b:= proc(n, i, p) option remember; `if`(n=0, p!,

      `if`(i<1, 0, add(b(n-i*j, i-1, p+j), j=0..n/i)))

    end:

a:= n-> b(n$2, 0):

seq(a(n), n=0..25);  # Alois P. Heinz, Apr 06 2016

MATHEMATICA

Rest[ CoefficientList[ Series[ Sum[ n!x^n / Product[1 - x^k, {k, n}], {n, 20}], {x, 0, 20}], x]] (* Robert G. Wilson v, Feb 10 2005 *)

PROG

(Sage)

from sage.combinat.partition import number_of_partitions_length

def A101880(n):

    return sum(number_of_partitions_length(n, k)*factorial(k) for k in (0..n))

print([A101880(n) for n in (0..21)]) # Peter Luschny, Aug 01 2015

CROSSREFS

Sequence in context: A030268 A097277 A034428 * A222398 A107894 A155858

Adjacent sequences:  A101877 A101878 A101879 * A101881 A101882 A101883

KEYWORD

nonn,nice

AUTHOR

Jon Perry, Jan 28 2005

EXTENSIONS

More terms from Vladeta Jovovic, Jan 29 2005

a(0)=1 prepended by Alois P. Heinz, Apr 06 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 19:49 EDT 2020. Contains 333127 sequences. (Running on oeis4.)