login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101882
Write three numbers, skip one, write three, skip two, write three, skip three... and so on.
3
1, 2, 3, 5, 6, 7, 10, 11, 12, 16, 17, 18, 23, 24, 25, 31, 32, 33, 40, 41, 42, 50, 51, 52, 61, 62, 63, 73, 74, 75, 86, 87, 88, 100, 101, 102, 115, 116, 117, 131, 132, 133, 148, 149, 150, 166, 167, 168, 185, 186, 187, 205, 206, 207, 226, 227, 228, 248, 249, 250, 271
OFFSET
1,2
COMMENTS
Union of A052905, A052905+1, and A052905+2. - Ivan Neretin, Aug 03 2016
First terms of the 3 repeated terms belong to A052905. - Michael De Vlieger, Aug 03 2016
FORMULA
G.f.: x*(1+x+x^2-x^4-x^5)/ ((1+x+x^2)^2 * (1-x)^3). [Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
MATHEMATICA
Flatten@Table[(n^2 + 5 n - 4)/2 + {0, 1, 2}, {n, 20}] (* Ivan Neretin, Aug 03 2016 *)
Table[Range[#, # + 2] &[(n^2 + 7 n + 2)/2], {n, 0, 20}] // Flatten (* or *)
Rest@ CoefficientList[Series[x (1 + x + x^2 - x^4 - x^5)/((1 + x + x^2)^2 (1 - x)^3), {x, 0, 61}], x] (* Michael De Vlieger, Aug 03 2016 *)
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 2, 3, 5, 6, 7, 10}, 70] (* Harvey P. Dale, Dec 26 2019 *)
PROG
(PARI) a(n)=my(k=n%3); if(k==2, n^2+17*n-2, k==1, n^2+19*n-2, n^2+15*n)/18 \\ Charles R Greathouse IV, Aug 03 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Candace Mills (scorpiocand(AT)yahoo.com), Dec 19 2004
STATUS
approved