OFFSET
1,3
LINKS
Alois P. Heinz, Antidiagonals n = 1..150, flattened
Istvan Mezo, On powers of Stirling matrices, arXiv:0812.4047 [math.CO], 2008.
K. A. Penson, P. Blasiak, G. Duchamp, A. Horzela, and A. I. Solomon, Hierarchical Dobinski-type relations via substitution and the moment problem, arXiv:quant-ph/0312202, 2003; J.Phys. A: Math.Gen. 37 3475-3487 (2004).
EXAMPLE
The table on p.6 of Mezo begins:
===========================================================
F_p,n|n=1|n=2|n=3.|.n=4.|..n=5.|....n=6.|.....n=7.|comment
===========================================================
p=1..|.1.|.3.|.13.|..75.|..541.|...4683.|...47293.|.A000670
p=2..|.1.|.4.|.23.|.175.|.1662.|..18937.|..251729.|.A083355
p=3..|.1.|.5.|.36.|.342.|.4048.|..57437.|..950512.|.A099391
p=4..|.1.|.6.|.52.|.594.|.8444.|.143783.|.2854261.|.A363008
p=5..|.1.|.7.|.71.|.949.|15775.|.313920.|.7279795.|.A363009
===========================================================
MAPLE
f:= proc(n) option remember; local k; if n<=1 then 1 else
add(binomial(n, k) *f(n-k), k=1..n) fi
end:
stirtr:= proc(a) proc(n) option remember;
add( a(k) *Stirling2(n, k), k=0..n)
end end:
F:= (p, n)-> (stirtr@@(p-1))(f)(n):
seq(seq(F(d-n, n), n=1..d-1), d=1..13); # Alois P. Heinz, Feb 02 2009
MATHEMATICA
f[n_] := f[n] = If[n <= 1, 1, Sum[Binomial[n, k]*f[n-k], {k, 1, n}]];
stirtr[a_] := Module[{g}, g[n_] := g[n] = Sum[a[k]*StirlingS2[n, k], {k, 0, n}]; g];
F[p_, n_] := (Composition @@ Table[stirtr, {p-1}])[f][n];
Table[Table[F[d-n, n], {n, 1, d-1}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Mar 30 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Jonathan Vos Post, Dec 22 2008
EXTENSIONS
More terms from Alois P. Heinz, Feb 02 2009
STATUS
approved