login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375854
Triangle read by rows: T(n, k) = 2^k * hypergeom([-n, -k], [], 1/2).
2
1, 1, 3, 1, 4, 14, 1, 5, 22, 86, 1, 6, 32, 152, 648, 1, 7, 44, 248, 1256, 5752, 1, 8, 58, 380, 2248, 12032, 58576, 1, 9, 74, 554, 3768, 23272, 130768, 671568, 1, 10, 92, 776, 5984, 42112, 270400, 1586944, 8546432, 1, 11, 112, 1052, 9088, 72032, 523072, 3479744, 21241984, 119401856
OFFSET
0,3
FORMULA
T(n, k) = Sum_{j=0..k} 2^(k - j)*binomial(n, j)*binomial(k, j)*j!.
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 3;
[2] 1, 4, 14;
[3] 1, 5, 22, 86;
[4] 1, 6, 32, 152, 648;
[5] 1, 7, 44, 248, 1256, 5752;
[6] 1, 8, 58, 380, 2248, 12032, 58576;
[7] 1, 9, 74, 554, 3768, 23272, 130768, 671568;
[8] 1, 10, 92, 776, 5984, 42112, 270400, 1586944, 8546432;
[9] 1, 11, 112, 1052, 9088, 72032, 523072, 3479744, 21241984, 119401856;
...
MAPLE
T := (n, k) -> 2^k * hypergeom([-n, -k], [], 1/2):
for n from 0 to 9 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Sep 02 2024
MATHEMATICA
T[n_, k_] := Sum[2^(k - j)*Binomial[n, j]*Binomial[k, j]*j!, {j, 0, k}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
PROG
(Python)
from math import isqrt, comb, factorial
def A375854(n):
a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
b = n-comb(a+1, 2)
return sum(comb(a, j)*comb(b, j)*factorial(j)<<b-j for j in range(b+1)) # Chai Wah Wu, Nov 13 2024
CROSSREFS
Cf. A375855, A000012, A087912 (main diagonal).
Sequence in context: A153278 A010284 A095328 * A066712 A064809 A058361
KEYWORD
nonn,tabl
AUTHOR
Detlef Meya, Aug 31 2024
STATUS
approved