login
A248044
Least positive integer m such that m + n divides pi(m)^2 + pi(n)^2, where pi(x) denotes the number of primes not exceeding x.
2
1, 3, 1, 4, 12, 11, 1, 8, 7, 16, 2, 5, 26, 25, 24, 4, 228, 227, 46, 45, 44, 43, 16, 6, 5, 1, 27, 26, 45, 44, 12526, 12525, 12524, 12523, 2970, 502, 351, 350, 46, 45, 236, 235, 10, 9, 8, 4, 1078, 1077, 576, 575, 574, 198, 63, 62, 61, 176, 16, 10, 362, 70
OFFSET
1,2
COMMENTS
Conjecture: a(n) exists for any n > 0.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1387 from Zhi-Wei Sun)
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
EXAMPLE
a(5) = 12 since 12 + 5 = 17 divides pi(12)^2 + pi(5)^2 = 5^2 + 3^2 = 34.
MATHEMATICA
Do[m=1; Label[aa]; If[Mod[PrimePi[m]^2+PrimePi[n]^2, m+n]==0, Print[n, " ", m]; Goto[bb]]; m=m+1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Zhi-Wei Sun, Sep 30 2014
STATUS
approved