OFFSET
1,2
COMMENTS
Conjecture: a(n) exists for any n > 0. - Zhi-Wei Sun, Sep 28 2014
If a(i) = j, then a(j) <= i. - Derek Orr, Sep 28 2014
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..5000 from Zhi-Wei Sun)
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
EXAMPLE
a(2) = 8 since 8 + 2 = 10 divides prime(8)^2 + prime(2)^2 = 19^2 + 3^2 = 370.
a(3) = 15479 since 15479 + 3 = 15482 divides prime(15479)^2 + prime(3)^2 = 169789^2 + 5^2 = 28828304546 = 15482*1862053.
a(4703) = 760027770 since 760027770 + 4703 = 760032473 divides prime(760027770)^2 + prime(4703)^2 = 17111249191^2 + 45329^2 = 292794848878552872722 = 760032473*385239919714.
MATHEMATICA
Do[m = 1; Label[aa]; If[Mod[Prime[m]^2 + Prime[n]^2, m + n] == 0, Print[n, " ", m]; Goto[bb]]; m = m + 1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
PROG
(PARI)
a(n)=m=1; while((prime(m)^2+prime(n)^2)%(m+n), m++); m
vector(75, n, a(n)) \\ Derek Orr, Sep 28 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 28 2014
STATUS
approved