login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247975
Least positive integer m such that m + n divides prime(m)^2 + prime(n)^2.
8
1, 8, 15479, 30, 29, 68, 51, 2, 73, 15, 39, 13, 12, 36, 10, 25, 33, 8, 15, 38, 40, 108, 42, 1, 16, 39, 31, 57, 5, 4, 27, 2, 17, 51, 30, 14, 36, 20, 11, 21, 32, 23, 39, 689, 29, 4, 27, 1873, 184, 7248, 7, 153, 132, 76, 75, 18, 28, 99, 2, 86
OFFSET
1,2
COMMENTS
Conjecture: a(n) exists for any n > 0. - Zhi-Wei Sun, Sep 28 2014
If a(i) = j, then a(j) <= i. - Derek Orr, Sep 28 2014
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..5000 from Zhi-Wei Sun)
Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
EXAMPLE
a(2) = 8 since 8 + 2 = 10 divides prime(8)^2 + prime(2)^2 = 19^2 + 3^2 = 370.
a(3) = 15479 since 15479 + 3 = 15482 divides prime(15479)^2 + prime(3)^2 = 169789^2 + 5^2 = 28828304546 = 15482*1862053.
a(4703) = 760027770 since 760027770 + 4703 = 760032473 divides prime(760027770)^2 + prime(4703)^2 = 17111249191^2 + 45329^2 = 292794848878552872722 = 760032473*385239919714.
MATHEMATICA
Do[m = 1; Label[aa]; If[Mod[Prime[m]^2 + Prime[n]^2, m + n] == 0, Print[n, " ", m]; Goto[bb]]; m = m + 1; Goto[aa]; Label[bb]; Continue, {n, 1, 60}]
PROG
(PARI)
a(n)=m=1; while((prime(m)^2+prime(n)^2)%(m+n), m++); m
vector(75, n, a(n)) \\ Derek Orr, Sep 28 2014
CROSSREFS
Sequence in context: A134373 A246959 A079186 * A198404 A079597 A160743
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Sep 28 2014
STATUS
approved