login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160743
8*P_7(n), 8 times the Legendre Polynomial of order 7 at n.
2
0, 8, 17593, 389112, 3169562, 15694600, 57385803, 170880248, 438565492, 1005601032, 2110507325, 4124403448, 7599974478, 13331249672, 22425272527, 36386743800, 57216718568, 87526438408, 130667379777, 190878599672, 273452459650, 384919809288, 533255710163
OFFSET
0,2
FORMULA
a(n) = n*(429*n^6 - 693*n^4 + 315*n^2 - 35)/2. - Vaclav Kotesovec, Jul 31 2013
From Colin Barker, Jul 23 2019: (Start)
G.f.: x*(8 + 17529*x + 248592*x^2 + 548822*x^3 + 248592*x^4 + 17529*x^5 + 8*x^6) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>7.
(End)
MAPLE
A160743 := proc(n)
8*orthopoly[P](7, n) ;
end proc: # R. J. Mathar, Oct 24 2011
MATHEMATICA
Table[8 LegendreP[7, n], {n, 0, 50}]
PROG
(PARI) a(n)=pollegendre(7, n)<<3 \\ Charles R Greathouse IV, Oct 24 2011
(PARI) concat(0, Vec(x*(8 + 17529*x + 248592*x^2 + 548822*x^3 + 248592*x^4 + 17529*x^5 + 8*x^6) / (1 - x)^8 + O(x^40))) \\ Colin Barker, Jul 23 2019
CROSSREFS
Sequence in context: A247975 A198404 A079597 * A079182 A079172 A173543
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 17 2009
STATUS
approved