The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A246959 Numbers of (undirected) Hamiltonian cycles in the n-Sierpiński gasket graph. 5
 1, 1, 8, 13824, 71328803586048, 9798477119793909670551703700100284084649984 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Table of n, a(n) for n=1..6. R. M. Bradley, Statistical mechanics of the travelling salesman on the Sierpinski gasket, J. Physique, 47 (1986), 9-14. doi:10.1051/jphys:019860047010900. S.-C. Chang, L.-C. Chen. Hamiltonian walks on the Sierpinski gasket, J. Math. Phys. 52 (2011), 023301. doi:10.1063/1.3545358. arXiv:0909.5541. Eric Weisstein's World of Mathematics, Hamiltonian Cycle. Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph. FORMULA For n >= 3, a(n) = 8 * 12^((3^(n-2)-3)/2). For n >= 4, a(n) = (3*a(n-1))^3. MATHEMATICA Join[{1, 1}, Table[8 12^((3^(n - 2) - 3)/2], {n, 8}]] (* Eric W. Weisstein, Jun 17 2017 *) Join[{1, 1}, RecurrenceTable[{a[3] == 8, a[n] == (3 a[n - 1])^3}, a, {n, 3, 8}]] (* Eric W. Weisstein, Mar 25 2018 *) PROG (Magma) [1, 1] cat [Floor(8 * 12^((3^(n-2)-3)/2)): n in [3..10]]; // Vincenzo Librandi, Jun 15 2015 CROSSREFS Cf. A234635, A246957, A246958. Sequence in context: A242852 A079235 A134373 * A079186 A247975 A198404 Adjacent sequences: A246956 A246957 A246958 * A246960 A246961 A246962 KEYWORD nonn AUTHOR Max Alekseyev, Sep 08 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 16:47 EDT 2024. Contains 372664 sequences. (Running on oeis4.)