login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246958
Number of directed Hamiltonian paths in the n-Sierpiński sieve graph that starts at the fixed corner.
5
2, 6, 152, 811008, 15502126646034432, 8348302506064411039310051552485442040121786368
OFFSET
1,1
COMMENTS
Explicit formula and asymptotic are given by Chang and Chen (2011).
a(7) contains 134 decimal digits.
LINKS
S.-C. Chang, L.-C. Chen. Hamiltonian walks on the Sierpinski gasket, J. Math. Phys. 52 (2011), 023301. doi:10.1063/1.3545358. See also, arXiv:0909.5541 [cond-mat.stat-mech], 2009.
Eric Weisstein's World of Mathematics, Hamiltonian Path
Eric Weisstein's World of Mathematics, Sierpiński Sieve Graph
MATHEMATICA
a[n_] := Module[{m}, If[n == 1, Return[2]]; m = 3^(n-2); 2^m*3^((m-1)/2)* (7*17/(2^4*3^3)*4^(n-1) + 2^2*13/3^3 - If[n == 2, 1/(2^2*3^2), 0])];
Array[a, 6] (* Jean-François Alcover, Dec 04 2018, from PARI *)
PROG
(PARI) A246958(n) = if(n==1, return(2)); my(m=3^(n-2)); 2^m * 3^((m-1)/2) * ( 7*17/(2^4*3^3)*4^(n-1) + 2^2*13/(3^3) - if(n==2, 1/(2^2*3^2) ) )
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Sep 08 2014
STATUS
approved