login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246961
Numerator of the expected number of random moves in Tower of Hanoi problem with n disks starting at a randomly chosen valid configuration and ending with all disks at peg 1.
0
0, 4, 146, 3034, 52916, 857824, 13426406, 206324374, 3138660776, 47471139964, 715573119866, 10765074628114, 161759034582236, 2428929817996504, 36456836245518926, 547058495778290254, 8207730761823753296, 123132640134289171444, 1847139704277091999586, 27708446454015214334794, 415638854666404701309956
OFFSET
0,2
COMMENTS
The expected number of random moves is given by a(n)/3^n = a(n)/A000244(n).
LINKS
M. A. Alekseyev and T. Berger, Solving the Tower of Hanoi with Random Moves. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Princeton University Press, 2016, pp. 65-79. ISBN 978-0-691-16403-8
FORMULA
a(n) = ( (3^n - 1)*(5^(n+1) - 2*3^(n+1)) + 5^n - 3^n ) / 4.
a(n) = 3^n*A007798(n) + 2*A134939(n).
G.f.: -2*x*(135*x^2-9*x-2) / ((3*x-1)*(5*x-1)*(9*x-1)*(15*x-1)). - Colin Barker, Sep 17 2014
PROG
(PARI) concat(0, Vec(-2*x*(135*x^2-9*x-2)/((3*x-1)*(5*x-1)*(9*x-1)*(15*x-1)) + O(x^100))) \\ Colin Barker, Sep 17 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Sep 08 2014
STATUS
approved