login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246963
G.f. satisfies: A(x) = Sum_{n>=0} A000108(n)^2 * (x-x^2)^n, where A000108(n) = C(2*n,n)/(n+1) is the n-th Catalan number.
0
1, 1, 3, 17, 125, 1055, 9755, 96353, 1000529, 10805045, 120429581, 1377565711, 16103628975, 191753782563, 2319792221739, 28453553549889, 353240252092329, 4432432002187105, 56149270333672577, 717376886229388757, 9236054560816552341, 119742311958753198301, 1562281609210280404333
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x*C(x)) = Sum_{n>=0} A000108(n)^2 * x^n, where C(x) = 1 + x*C(x)^2 is the Catalan function.
a(n) = Sum_{k=0..n} (-1)^k * C(n-k,k) * A000108(n-k)^2, where A000108(n) = C(2*n,n)/(n+1).
Recurrence: n*(n+1)^2*a(n) = n*(18*n^2 - 13*n + 5)*a(n-1) - (49*n^3 - 111*n^2 + 20*n + 72)*a(n-2) + 8*(6*n^3 - 22*n^2 + 8*n + 27)*a(n-3) - 16*(n-3)^2*(n+1)*a(n-4). - Vaclav Kotesovec, Sep 16 2014
a(n) ~ 12*(7-4*sqrt(3)) * (8+4*sqrt(3))^n / (Pi * n^3). - Vaclav Kotesovec, Sep 16 2014
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 125*x^4 + 1055*x^5 + 9755*x^6 +...
The g.f. A(x) = D(x-x^2) satisfies A(x*C(x)) = D(x), where
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 +...+ A000108(n)*x^n +...
D(x) = 1 + x + 4*x^2 + 25*x^3 + 196*x^4 + 1764*x^5 + 17424*x^6 + 184041*x^7 + 2044900*x^8 + 23639044*x^9 +...+ A000108(n)^2*x^n +...
The squares of the Catalan numbers can be generated from this sequence by using the following summation rule.
Drop the first term, take partial sums, and repeat, like so:
1, 1, 3, 17, 125, 1055, 9755, 96353, 1000529, 10805045, ...;
.. 1, 4, 21, 146, 1201, 10956, 107309, 1107838, 11912883, ...;
..... 4, 25, 171, 1372, 12328, 119637, 1227475, 13140358, ...;
........ 25, 196, 1568, 13896, 133533, 1361008, 14501366, ...;
............ 196, 1764, 15660, 149193, 1510201, 16011567, ...;
................. 1764, 17424, 166617, 1676818, 17688385, ...;
....................... 17424, 184041, 1860859, 19549244, ...;
.............................. 184041, 2044900, 21594144, ...; ...
MATHEMATICA
Table[Sum[(-1)^k * Binomial[n-k, k] * Binomial[2*(n-k), n-k]^2 / (n-k+1)^2, {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 16 2014 *)
PROG
(PARI) {a(n)=local(A=1); A=sum(m=0, n, binomial(2*m, m)^2/(m+1)^2 * (x-x^2 +x*O(x^n))^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n\2, (-1)^k * binomial(n-k, k) * binomial(2*(n-k), n-k)^2/(n-k+1)^2)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A330803 A267736 A129115 * A093460 A187613 A179300
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 08 2014
STATUS
approved