login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246962
Expansion of psi(-x^3) * phi(-x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
3
1, 0, -2, -1, 0, 2, 0, 0, 2, -1, 0, 0, 0, 0, 0, 0, 0, -2, -1, 0, -2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, -2, -2, 0, 2, 0, 0, -2, 0, 0, 0, -1, 0, 2, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 0, -2, 0, 0, -2, 2, 0, 0, -2, 0, -2, 0, 0, -2
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-3/8) * eta(q) * eta(q^4) * eta(q^6)^2 / (eta(q^2) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [0, -2, -1, -1, 0, -2, 0, -1, -1, -2, 0, -2, ...].
a(3*n) = A226860(n). a(3*n + 1) = 0.
a(3*n + 2) = -2 * A257469(n). - Michael Somos, Apr 25 2015
EXAMPLE
G.f. = 1 - 2*x^2 - x^3 + 2*x^5 + 2*x^8 - x^9 - 2*x^17 - x^18 - 2*x^20 + ...
G.f. = q^3 - 2*q^19 - q^27 + 2*q^43 + 2*q^67 - q^75 - 2*q^139 - q^147 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, Pi/4, q^(3/2)] / (Sqrt[2] q^(3/8)), {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x^4 + A) * eta(x^6 + A)), n))};
(PARI) {a(n) = my(A, p, e, i); if( n<0, 0, n = 8*n + 3; A = factor(n); -I * prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==2, 0, if( p==3, I^e, if( p%24 == 1 || p%24==19, for(j=1, sqrtint(p\18), if( issquare( p - 18*j^2, &i), break)); (e+1) * (if(p%24==1, 1, -I) * kronecker( 12, i))^e, if( e%2, 0, if(p%24>12, 1, -1)^(e/2)))) ))))};
CROSSREFS
Sequence in context: A193275 A182033 A112214 * A112608 A058677 A262780
KEYWORD
sign
AUTHOR
Michael Somos, Sep 08 2014
STATUS
approved