login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193275
Expansion of psi(x^2) * phi(x^17) - x^4 * phi(x) * psi(x^34) in powers of x^4 where phi(), psi() are Ramanujan theta functions.
1
1, 0, 1, 0, -1, -2, 1, 0, -2, 0, 0, 0, 1, -2, 0, 0, 0, 2, 0, 2, -1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, -1, -2, -2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, -2, 0, 1, 0, 0, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, -2, 0, -2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(q) * phi(q^68) - phi(q^4) * phi(q^17)) / (2 * q) in powers of q^4 where phi() is a Ramanujan theta function.
Expansion of q^(-1) * (eta(q^4)^2 * eta(q^34)^5 / (eta(q^2) * eta(q^17)^2 * eta(q^68)^2) - eta(q^2)^5 * eta(q^68)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^34))) in powers of q^4.
G.f. is a period 1 Fourier series which satisfies f(-1 / (272 t)) = 272^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
EXAMPLE
1 + x^2 - x^4 - 2*x^5 + x^6 - 2*x^8 + x^12 - 2*x^13 + 2*x^17 + 2*x^19 - ...
q + q^9 - q^17 - 2*q^21 + q^25 - 2*q^33 + q^49 - 2*q^53 + 2*q^69 + 2*q^77 - ...
MATHEMATICA
a[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q^(1/4)]*EllipticTheta[3, 0, q^17] - EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^(17/4)])/(2* q^(1/4)), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 03 2018 *)
PROG
(PARI) {a(n) = local(x); if( n<0, 0, n = 4*n + 1; (sum( i=1, sqrtint( n\68), issquare( n - 68*i^2)) - sum( i=1, sqrtint( (n-1)\17), issquare( n - 17*i^2, &x) && (x%2==0) )) * 2 + issquare( n) - issquare( 17*n))}
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 * eta(x^34 + A)^5 / (eta(x^2 + A) * eta(x^17 + A)^2 * eta(x^68 + A)^2) - x^4 * eta(x^2 + A)^5 * eta(x^68 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^34 + A)), n))}
CROSSREFS
Sequence in context: A267546 A228817 A110399 * A182033 A112214 A246962
KEYWORD
sign
AUTHOR
Michael Somos, Jul 21 2011
STATUS
approved