login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193277
Triangle T(n,k), n>=1, 0<=k<=(3+3^n)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the Sierpinski graph S_n, highest powers first.
9
1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -27, 339, -2625, 14016, -54647, 160663, -362460, 631828, -848736, 866640, -653248, 343744, -112896, 17408, 0, 1, -81, 3204, -82476, 1553454, -22823259, 272286183, -2711405961, 22990179324
OFFSET
1,2
COMMENTS
The Sierpinski graph S_n has (3+3^n)/2 vertices and 3^n edges. The chromatic polynomial of S_n has (3+3^n)/2+1 coefficients.
LINKS
Alois P. Heinz, Rows n = 1..7, flattened
Eric Weisstein's World of Mathematics, Chromatic Polynomial.
Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
EXAMPLE
3 example graphs: o
. / \
. o---o
. / \ / \
. o o---o---o
. / \ / \ / \
. o o---o o---o o---o
. / \ / \ / \ / \ / \ / \ / \
. o---o o---o---o o---o---o---o---o
Graph: S_1 S_2 S_3
Vertices: 3 6 15
Edges: 3 9 27
The Sierpinski graph S_1 is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1, -3, 2, 0;
1, -9, 32, -56, 48, -16, ...
1, -27, 339, -2625, 14016, -54647, ...
1, -81, 3204, -82476, 1553454, -22823259, ...
1, -243, 29295, -2336013, 138604878, -6526886841, ...
1, -729, 265032, -64069056, 11585834028, -1671710903793, ...
1, -2187, 2389419, -1738877625, 948268049436, -413339609377179, ...
CROSSREFS
KEYWORD
sign,tabf,look,hard
AUTHOR
Alois P. Heinz, Jul 20 2011
STATUS
approved