login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270741
a(n) = (Fibonacci(n+2)-1) mod Fibonacci(floor(n/2)).
0
0, 0, 0, 0, 0, 1, 0, 1, 3, 2, 0, 1, 11, 10, 0, 1, 32, 31, 0, 1, 87, 86, 0, 1, 231, 230, 0, 1, 608, 607, 0, 1, 1595, 1594, 0, 1, 4179, 4178, 0, 1, 10944, 10943, 0, 1, 28655, 28654, 0, 1, 75023, 75022, 0, 1, 196416, 196415, 0, 1, 514227, 514226, 0, 1, 1346267, 1346266, 0, 1, 3524576, 3524575, 0, 1
OFFSET
2,9
COMMENTS
It appears that a(n)=1 gives same terms as A222945. - Michel Marcus, Mar 23 2016
FORMULA
Empirical g.f.: x^7*(1-x+2*x^2+x^3-3*x^4+3*x^5-6*x^6+5*x^7+x^8-x^9+2*x^10-2*x^11) / ((1-x)*(1+x^2)*(1+x^2-x^4)*(1-x^2-x^4)). - Colin Barker, Mar 23 2016
EXAMPLE
a(10) = 3 since (1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55) mod 5 = 143 mod 5 = 3.
a(11) = 2 since (1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 + 89) mod 5 = 2.
a(12) = 0 since (1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 + 89 + 144) mod 8 = 0.
MATHEMATICA
Table[Mod[Fibonacci[n + 2] - 1, Fibonacci[Floor[n/2]]], {n, 2, 69}] (* Michael De Vlieger, Mar 23 2016 *)
PROG
(PARI) for(n=2, 1e2, print1((fibonacci(n+2)-1) % fibonacci(n\2), ", "));
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 22 2016
STATUS
approved