The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270744 (r,1)-greedy sequence, where r(k) = 1/tau^k, where tau = golden ratio. 10
 1, 2, 2, 3, 4, 32, 1065, 2038968, 5977146319204, 36314862033946243071181679, 1028280647188781709727717632740627249617427013751977, 958046899855070460620234639622630375078362220775180051610386376308132568342498992099474472596860400289 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers.  Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x.  The sequence (a(n)) is the (r,x)-greedy sequence.  We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x.  (The same algorithm is used to generate sequences listed at A269993.) Guide to related sequences: x     r(k) 1   1/tau^k             A270744 1   k/tau^k             A270745 1   2/e^k               A270746 1   4/Pi^k              A270747 1   2/log(k+1)          A270748 1   1/(k*log(k+1))      A270749 1   (1/k)*log(k+1)      A270750 1   2/(k*tau^k)         A270751 1   1/(k*e)             A270752 1   1/(k*sqrt(2))       A270916 LINKS FORMULA a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1). r(1)/a(1) + ... + r(n)/a(n) + ... = 1 EXAMPLE a(1) = ceiling(r(1)) = ceiling(1/tau) = ceiling(0.618...) = 1; a(2) = ceiling(r(2)/(1 - r(1)/1) = 2; a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2) = 2. The first 6 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ...  are 0.618..., 0.809..., 0.927..., 0.975..., 0.998..., 0.999967... . MATHEMATICA \$MaxExtraPrecision = Infinity; z = 13; r[k_] := N[1/GoldenRatio^k, 1000]; f[x_, 0] = x; n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] x = 1; Table[n[x, k], {k, 1, z}] N[Sum[r[k]/n[x, k], {k, 1, 13}], 200] CROSSREFS Cf.  A001620, A270745, A094214, A269993. Sequence in context: A205118 A022405 A309895 * A093927 A067088 A065519 Adjacent sequences:  A270741 A270742 A270743 * A270745 A270746 A270747 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 19:12 EST 2021. Contains 340411 sequences. (Running on oeis4.)