login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270750 (r,1)-greedy sequence, where r(k) = 1/(k*log(k+1)). 1
2, 2, 5, 52, 7132, 657650603, 642344866115572775, 833790618410287382945149122154404558, 1229679779588111283437146138551802288646488858072438842199407751052675116 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. See A270744 for a guide to related sequences.
LINKS
FORMULA
a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1).
r(1)/a(1) + ... + r(n)/a(n) + ... = 1
EXAMPLE
a(1) = ceiling(r(1)) = ceiling(1/tau) = ceiling(0.618...) = 2;
a(2) = ceiling(r(2)/(1 - r(1)/1) = 2;
a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2) = 5.
The first 3 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are
0.721..., 0.948..., 0.996...
MATHEMATICA
$MaxExtraPrecision = Infinity; z = 16;
r[k_] := N[1/(k*Log[k + 1]), 1000]; f[x_, 0] = x;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = 1; Table[n[x, k], {k, 1, z}]
N[Sum[r[k]/n[x, k], {k, 1, 18}], 200]
CROSSREFS
Sequence in context: A196128 A227575 A114715 * A234703 A345740 A230607
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 09 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 15:20 EDT 2024. Contains 371916 sequences. (Running on oeis4.)