login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196128
Largest prime p[i] such that p[i]+p[i+1]+...+p[i+n-1] <= primorial(n) = A002110(n).
3
2, 2, 5, 43, 449, 4987, 72901, 1212427, 24787981, 646969237, 18232771699, 618394844407, 23403866424979, 934482952261687, 40992652172565871, 2036822404824377491, 113103550009071331379, 6516021186633720609839, 413595871109487739782749, 27897041506334948048370371
OFFSET
1,1
COMMENTS
It is not known whether there is n (necessarily even) such that p[i]+p[i+1]+...+p[i+n-1] = primorial(n) for some p[i].
LINKS
J. M. Bergot, C. Rivera (Ed.), Problem 56.  p1*p2*…*pk = q1+q2+…+qk, on primepuzzle.net.
PROG
(PARI) A196128(k)={my(P=A002110(k), S=precprime(P\k), p=S, q=S); for(n=1, k, S+=if(S*k>P*n, p=precprime(p-1), q=nextprime(q+1))); p}
CROSSREFS
Sequence in context: A282706 A301346 A020549 * A227575 A114715 A270750
KEYWORD
nonn
AUTHOR
M. F. Hasler, Sep 28 2011
STATUS
approved