login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282706
Smallest prime factor of A020549(n) = (n!)^2 + 1.
6
2, 2, 5, 37, 577, 14401, 13, 101, 17, 131681894401, 13168189440001, 1593350922240001, 101, 38775788043632640001, 29, 1344169, 149, 9049, 37, 710341, 41, 61, 337, 509, 384956219213331276939737002152967117209600000001, 941
OFFSET
0,1
COMMENTS
By construction, for n >= 2, a(n) == 1 (mod 4) and a(n) > n.
From Robert Israel, Mar 08 2017: (Start)
a(n) = A020549(n) for n in A046029.
a(n) <= 2*n+1 if n is in A104636.
The first member of A104636 for which a(n) < 2*n+1 is 48.
a(a(n)-n-1) = a(n). (End)
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.
MAPLE
f:= proc(n) local a;
a:= min(map(proc(t) if t[1]::integer then t[1] fi end proc, ifactors((n!)^2+1, easy)[2]));
if a = infinity then
a:= traperror(timelimit(60, min(map(t -> t[1], ifactors((n!)^2+1)[2]))));
fi;
a
end proc:
map(f, [$0..36]); # Robert Israel, Mar 08 2017
MATHEMATICA
Join[{2}, Array[FactorInteger[(#!)^2 + 1][[1, 1]]&, {25}]] (* Vincenzo Librandi, Feb 28 2017 *)
PROG
(Magma) [2] cat [Min(PrimeFactors(Factorial(n)^2 + 1)):n in[1..25]]; // Vincenzo Librandi, Feb 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 26 2017
EXTENSIONS
More terms from Vincenzo Librandi, Feb 28 2017
STATUS
approved