login
A282706
Smallest prime factor of A020549(n) = (n!)^2 + 1.
6
2, 2, 5, 37, 577, 14401, 13, 101, 17, 131681894401, 13168189440001, 1593350922240001, 101, 38775788043632640001, 29, 1344169, 149, 9049, 37, 710341, 41, 61, 337, 509, 384956219213331276939737002152967117209600000001, 941
OFFSET
0,1
COMMENTS
By construction, for n >= 2, a(n) == 1 (mod 4) and a(n) > n.
From Robert Israel, Mar 08 2017: (Start)
a(n) = A020549(n) for n in A046029.
a(n) <= 2*n+1 if n is in A104636.
The first member of A104636 for which a(n) < 2*n+1 is 48.
a(a(n)-n-1) = a(n). (End)
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.
MAPLE
f:= proc(n) local a;
a:= min(map(proc(t) if t[1]::integer then t[1] fi end proc, ifactors((n!)^2+1, easy)[2]));
if a = infinity then
a:= traperror(timelimit(60, min(map(t -> t[1], ifactors((n!)^2+1)[2]))));
fi;
a
end proc:
map(f, [$0..36]); # Robert Israel, Mar 08 2017
MATHEMATICA
Join[{2}, Array[FactorInteger[(#!)^2 + 1][[1, 1]]&, {25}]] (* Vincenzo Librandi, Feb 28 2017 *)
PROG
(Magma) [2] cat [Min(PrimeFactors(Factorial(n)^2 + 1)):n in[1..25]]; // Vincenzo Librandi, Feb 28 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 26 2017
EXTENSIONS
More terms from Vincenzo Librandi, Feb 28 2017
STATUS
approved