login
A076658
Numerator of f(n), where for n > 2, f(n) = (n-1)/f(n-1) + (n-2)/f(n-2), with f(1)=1, f(2)=2.
1
1, 2, 2, 5, 31, 498, 8955, 2882938, 52586050459, 323804423976901335, 15495775772522155664701173463, 4775184376703288469595772730789093950647769107, 365485679191762741290548194655325571866478457308489227548407339087759232157
OFFSET
1,2
COMMENTS
f(n)-> sqrt(2n), a slowly converging sequence.
The next term in the sequence (a(14)) has 120 digits. - Harvey P. Dale, Nov 29 2011
EXAMPLE
f(3) = 2/f(2) + 1/f(1) = 2/2 + 1/1 = 2/1, so a(3) = 2.
MATHEMATICA
Numerator[RecurrenceTable[{a[1]==1, a[2]==2, a[n]==(n-1)/a[n-1]+(n-2)/ a[n-2]}, a, {n, 13}]] (* Harvey P. Dale, Nov 29 2011 *)
PROG
(Maxima)
a[1]:1$
a[2]:2$
a[n]:=(n-1)/a[n-1]+(n-2)/a[n-2];
makelist(ratnumer(a[n]), n, 1, 15); /* Martin Ettl, Oct 30 2012 */
CROSSREFS
Cf. A076659.
Sequence in context: A259861 A293264 A265777 * A218270 A218122 A282706
KEYWORD
nonn,frac
AUTHOR
Zak Seidov, Oct 24 2002
EXTENSIONS
One more term from Harvey P. Dale, Nov 29 2011
STATUS
approved