This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A270708 a(n) = A048739(n-1) mod A000129(floor(n/2)). 1
 0, 0, 0, 1, 4, 3, 0, 1, 28, 27, 0, 1, 168, 167, 0, 1, 984, 983, 0, 1, 5740, 5739, 0, 1, 33460, 33459, 0, 1, 195024, 195023, 0, 1, 1136688, 1136687, 0, 1, 6625108, 6625107, 0, 1, 38613964, 38613963, 0, 1, 225058680, 225058679, 0, 1, 1311738120, 1311738119, 0, 1, 7645370044, 7645370043, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,5 COMMENTS It appears that a(4*n+1) = 1. - Michel Marcus, Mar 23 2016 LINKS FORMULA Empirical g.f.: x^5*(1+3*x-6*x^4+6*x^5+x^8-x^9) / ((1-x)*(1+x^2)*(1+2*x^2-x^4)*(1-2*x^2-x^4)). - Colin Barker, Mar 22 2016 EXAMPLE a(7) = 3 because a(7) = A048739(6) mod A000129(floor(7/2)) = (1 + 2 + 5 + 12 + 29 + 70 + 169) mod 5 = 288 mod 5 = 3. a(8) = 0 because a(8) = A048739(7) mod A000129(floor(8/2)) = (1 + 2 + 5 + 12 + 29 + 70 + 169 + 408) mod 12 = 0. a(9) = 1 because a(9) = A048739(8) mod A000129(floor(9/2)) = (1 + 2 + 5 + 12 + 29 + 70 + 169 + 408 + 985) mod 12 = 1. PROG (PARI) a000129(n) = ([2, 1; 1, 0]^n)[2, 1]; for(n=2, 1e2, print1(sum(k=1, n, a000129(k)) % a000129(n\2), ", ")); CROSSREFS Cf. A000129 (Pell numbers), A048739 (partial sums of Pell numbers). Sequence in context: A294188 A152151 A152148 * A198261 A284056 A296002 Adjacent sequences:  A270705 A270706 A270707 * A270709 A270710 A270711 KEYWORD nonn AUTHOR Altug Alkan, Mar 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 15:27 EDT 2018. Contains 316264 sequences. (Running on oeis4.)