login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270710 a(n) = 3*n^2 + 2*n - 1. 3
-1, 4, 15, 32, 55, 84, 119, 160, 207, 260, 319, 384, 455, 532, 615, 704, 799, 900, 1007, 1120, 1239, 1364, 1495, 1632, 1775, 1924, 2079, 2240, 2407, 2580, 2759, 2944, 3135, 3332, 3535, 3744, 3959, 4180, 4407, 4640, 4879, 5124, 5375, 5632, 5895, 6164, 6439, 6720, 7007, 7300, 7599 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

In general, the ordinary generating function for the values of quadratic polynomial p*n^2 + q*n + k, is (k + (p + q - 2*k)*x + (p - q + k)*x^2)/(1 - x)^3.

From Bruno Berselli, Mar 25 2016: (Start)

This sequence and A140676 provide all integer m such that 3*m + 4 is a square.

Numbers related to A135713 by A135713(n) = n*a(n) - Sum_{k=0..n-1} a(k).

After -1, second bisection of A184005. (End)

LINKS

Table of n, a(n) for n=0..50.

Ilya Gutkovskiy, Examples of the ordinary generating function for the values of quadratic polynomial

Eric Weisstein's World of Mathematics, Quadratic Polynomial

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (-1 + 7*x)/(1 - x)^3.

E.g.f.: exp(x)*(-1 + 5*x + 3*x^2).

a(n)  = 3*a(n-1) - 3*a(n-2) + a(n-3).

a(n)  = A033428(n) + A060747(n).

a(n)  = A045944(n) - 1 = A056109(n) - 2.

a(-n) = A140676(n-1), with A140676(-1) = -1.

Sum_{n>=0} 1/a(n) = 3*(log(3) - 2)/8 - Pi/(8*sqrt(3)) = -0.564745312278736...

a(n) = Sum_{i = n-1..2*n-1} (2*i + 1). - Bruno Berselli, Feb 16 2018

EXAMPLE

a(0) = 3*0^2 + 2*0 - 1 = -1;

a(1) = 3*1^2 + 2*1 - 1 =  4;

a(2) = 3*2^2 + 2*2 - 1 = 15;

a(3) = 3*3^2 + 2*3 - 1 = 32, etc.

MATHEMATICA

Table[3 n^2 + 2 n - 1, {n, 0, 50}]

LinearRecurrence[{3, -3, 1}, {-1, 4, 15}, 51]

PROG

(PARI) Vec((-1 + 7*x)/(1 - x)^3 + O(x^60)) \\ Michel Marcus, Mar 22 2016

(PARI) lista(nn) = {for(n=0, nn, print1(3*n^2 + 2*n - 1, ", ")); } \\ Altug Alkan, Mar 25 2016

(PARI) vector(50, n, n--; 3*n^2+2*n-1) \\ Bruno Berselli, Mar 25 2016

(Sage) [3*n^2+2*n-1 for n in (0..50)] # Bruno Berselli, Mar 25 2016

(Maxima) makelist(3*n^2+2*n-1, n, 0, 50); /* Bruno Berselli, Mar 25 2016 */

(MAGMA) [3*n^2+2*n-1: n in [0..50]]; // Bruno Berselli, Mar 25 2016

(GAP) List([0..50], n -> 3*n^2+2*n-1); # Bruno Berselli, Feb 16 2018

CROSSREFS

Cf. A033428, A045944, A056105, A056109, A060747, A135713, A140676, A184005.

Sequence in context: A031012 A188075 A121914 * A110341 A116035 A256715

Adjacent sequences:  A270707 A270708 A270709 * A270711 A270712 A270713

KEYWORD

sign,easy,changed

AUTHOR

Ilya Gutkovskiy, Mar 22 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 24 06:13 EST 2018. Contains 299597 sequences. (Running on oeis4.)