login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270710
a(n) = 3*n^2 + 2*n - 1.
6
-1, 4, 15, 32, 55, 84, 119, 160, 207, 260, 319, 384, 455, 532, 615, 704, 799, 900, 1007, 1120, 1239, 1364, 1495, 1632, 1775, 1924, 2079, 2240, 2407, 2580, 2759, 2944, 3135, 3332, 3535, 3744, 3959, 4180, 4407, 4640, 4879, 5124, 5375, 5632, 5895, 6164, 6439, 6720, 7007, 7300, 7599
OFFSET
0,2
COMMENTS
In general, the ordinary generating function for the values of quadratic polynomial p*n^2 + q*n + k, is (k + (p + q - 2*k)*x + (p - q + k)*x^2)/(1 - x)^3.
From Bruno Berselli, Mar 25 2016: (Start)
This sequence and A140676 provide all integer m such that 3*m + 4 is a square.
Numbers related to A135713 by A135713(n) = n*a(n) - Sum_{k=0..n-1} a(k).
After -1, second bisection of A184005. (End)
FORMULA
G.f.: (-1 + 7*x)/(1 - x)^3.
E.g.f.: exp(x)*(-1 + 5*x + 3*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A033428(n) + A060747(n).
a(n) = A045944(n) - 1 = A056109(n) - 2.
a(-n) = A140676(n-1), with A140676(-1) = -1.
Sum_{n>=0} 1/a(n) = 3*(log(3) - 2)/8 - Pi/(8*sqrt(3)) = -0.564745312278736...
a(n) = Sum_{i = n-1..2*n-1} (2*i + 1). - Bruno Berselli, Feb 16 2018
a(n) = A000290(n+1) + 2*A000290(n) - 2. - Leo Tavares, May 28 2023
Sum_{n>=0} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + 3/4. - Amiram Eldar, Jul 20 2023
EXAMPLE
a(0) = 3*0^2 + 2*0 - 1 = -1;
a(1) = 3*1^2 + 2*1 - 1 = 4;
a(2) = 3*2^2 + 2*2 - 1 = 15;
a(3) = 3*3^2 + 2*3 - 1 = 32, etc.
MATHEMATICA
Table[3 n^2 + 2 n - 1, {n, 0, 50}]
LinearRecurrence[{3, -3, 1}, {-1, 4, 15}, 51]
PROG
(PARI) Vec((-1 + 7*x)/(1 - x)^3 + O(x^60)) \\ Michel Marcus, Mar 22 2016
(PARI) lista(nn) = {for(n=0, nn, print1(3*n^2 + 2*n - 1, ", ")); } \\ Altug Alkan, Mar 25 2016
(PARI) vector(50, n, n--; 3*n^2+2*n-1) \\ Bruno Berselli, Mar 25 2016
(Sage) [3*n^2+2*n-1 for n in (0..50)] # Bruno Berselli, Mar 25 2016
(Maxima) makelist(3*n^2+2*n-1, n, 0, 50); /* Bruno Berselli, Mar 25 2016 */
(Magma) [3*n^2+2*n-1: n in [0..50]]; // Bruno Berselli, Mar 25 2016
(GAP) List([0..50], n -> 3*n^2+2*n-1); # Bruno Berselli, Feb 16 2018
KEYWORD
sign,easy
AUTHOR
Ilya Gutkovskiy, Mar 22 2016
STATUS
approved