login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270713
Numbers that are equal to the product of the number of divisors of their first k powers, for some k.
6
1, 2, 225, 4050, 66528, 113400, 120960, 92802153185280, 726046074908612178739200000000000, 3524292573661555639437312000000000000
OFFSET
1,2
COMMENTS
a(2) = 2 is the only prime term possible, since the product of tau(p)^k is always even, and 2 is the only even prime. - Michael De Vlieger, Mar 27 2016
a(11) > 10^40. - Hiroaki Yamanouchi, Apr 07 2016
The corresponding k are: 1, 2, 3, 3, 3, 3, 3, 4, 5, 5. - Michel Marcus, Apr 08 2016
EXAMPLE
d(4050) * d(4050^2) = 30 * 135 = 4050;
d(66528) * d(66528^2) = 96 * 693 = 66528.
MAPLE
with(numtheory): P:=proc(q) local a, k, n;
for n from 1 to q do a:=tau(n); k:=1;
while a<n do k:=k+1; a:=a*tau(n^k); od;
if n=a then print(n); fi; od; end: P(10^6);
MATHEMATICA
Select[Insert[Complement[Range@ #, Prime@ Range@ PrimePi@ #] &[2 10^5], 2, 2], Function[k, AnyTrue[Range@ 3, Product[DivisorSigma[0, k^i], {i, #}] == k &]]] (* Michael De Vlieger, Mar 25 2016 *)
PROG
(PARI) isok(n) = {k = 1; prd = 1; while (prd < n, prd *= numdiv(n^k); k++); prd == n; } \\ Michel Marcus, Apr 08 2016
CROSSREFS
Sequence in context: A132936 A110715 A242835 * A071225 A212082 A015968
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Mar 22 2016
EXTENSIONS
a(8)-a(10) from Hiroaki Yamanouchi, Apr 07 2016
STATUS
approved